Advertisement

Degradation of S. cerevisiae Cohesin with the Auxin-Inducible Degron System

  • Clémentine Brocas
  • Cécile Ducrot
  • Karine DubranaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2004)

Abstract

The cohesin complex is required to establish sister chromatid cohesion and ensure accurate chromosome segregation after DNA replication. Recent data has also revealed a role for cohesion as a major player in DNA repair and gene expression regulation. All subunits of the Cohesin complex are essential and cannot be deleted. Here, we describe a protocol to efficiently deplete cohesin subunits with an auxin-inducible degron (AID) system in S. cerevisiae.

Key words

S. cerevisiae Cohesin Auxin degron 

Notes

Acknowledgments

This work was supported by a grant from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007 2013/European Research Council grant agreement 281287) and fundings from the Radiobiology program of the CEA Segment 4 and ANR (DICENs-ANR-14-CE10-0021-01).

References

  1. 1.
    Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57CrossRefGoogle Scholar
  2. 2.
    Michaelis C, Ciosk R, Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45CrossRefGoogle Scholar
  3. 3.
    Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745.  https://doi.org/10.1146/annurev.genet.35.102401.091334 CrossRefPubMedGoogle Scholar
  4. 4.
    Nasmyth K (2017) How are DNAs woven into chromosomes? Science 358:589–590.  https://doi.org/10.1126/science.aap8729 CrossRefPubMedGoogle Scholar
  5. 5.
    Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–857.  https://doi.org/10.1016/j.cell.2016.01.033 CrossRefPubMedGoogle Scholar
  6. 6.
    Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17:399–412.  https://doi.org/10.1038/nrm.2016.30 CrossRefPubMedGoogle Scholar
  7. 7.
    Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648.  https://doi.org/10.1146/annurev.biochem.74.082803.133219 CrossRefPubMedGoogle Scholar
  8. 8.
    Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997CrossRefGoogle Scholar
  9. 9.
    Nishimura K, Fukagawa T, Takisawa H et al (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6:917–922.  https://doi.org/10.1038/nmeth.1401 CrossRefPubMedGoogle Scholar
  10. 10.
    Morawska M, Ulrich HD (2013) An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast 30:341–351.  https://doi.org/10.1002/yea.2967 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gietz RD (2014) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 1205:1–12.  https://doi.org/10.1007/978-1-4939-1363-3_1 CrossRefPubMedGoogle Scholar
  12. 12.
    Loïodice I, Dubarry M, Taddei A (2004) Scoring and manipulating gene position and dynamics using FROS in budding yeast. Curr Protoc Cell Biol 62:Unit 22.17.1–Unit 22.17.14.  https://doi.org/10.1002/0471143030.cb2217s62 CrossRefGoogle Scholar
  13. 13.
    Rohner S, Gasser SM, Meister P (2008) Modules for cloning-free chromatin tagging inSaccharomyces cerevisae. Yeast 25:235–239.  https://doi.org/10.1002/yea.1580 CrossRefPubMedGoogle Scholar
  14. 14.
    Dubrana K, van Attikum H, Hediger F, Gasser SM (2007) The processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast. J Cell Sci 120:4209–4220.  https://doi.org/10.1242/jcs.018366 CrossRefPubMedGoogle Scholar
  15. 15.
    Antoce OA, Antoce V, Takahashi K, Yoshizako F (1997) Quantitative study of yeast growth in the presence of added ethanol and methanol using a calorimetric approach. Biosci Biotechnol Biochem 61:664–669.  https://doi.org/10.1271/bbb.61.664 CrossRefPubMedGoogle Scholar
  16. 16.
    Horvath A, Riezman H (1994) Rapid protein extraction from Saccharomyces cerevisiae. Yeast 10:1305–1310.  https://doi.org/10.1002/yea.320101007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Clémentine Brocas
    • 1
    • 2
    • 3
  • Cécile Ducrot
    • 1
    • 2
    • 3
  • Karine Dubrana
    • 1
    • 2
    • 3
    Email author
  1. 1.UMR Stabilité Génétique Cellules Souches et RadiationsUniversité Paris Diderot, Université Paris-Sud, CEAFontenay-aux-RosesFrance
  2. 2.U1274, InsermFontenay-aux-RosesFrance
  3. 3.iRCM/JACOB/DRF, CEAFontenay-aux-RosesFrance

Personalised recommendations