SMC Complexes pp 223-238 | Cite as

Tracking Bacterial Chromosome Dynamics with Microfluidics-Based Live Cell Imaging

  • Suchitha Raghunathan
  • Anjana BadrinarayananEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2004)


In bacteria, chromosomes are highly organized within the limited volume of the cell to form a nucleoid. Recent application of microscopy and chromosome conformation capture techniques have together provided a comprehensive understanding of the nature of this organization and the role of factors such as the structural maintenance of chromosomes (SMC) proteins in the establishment and maintenance of the same. In this chapter, we outline a microfluidics-based approach for live cell imaging of Escherichia coli chromosome dynamics in wild-type cells. This assay can be used to track the activity of the SMC complex, MukBEF, on DNA and assess the impact of perturbations such as DNA damage on chromosome organization and segregation.

Key words

Microfluidics Fluorescence microscopy Chromosome DNA damage SMC proteins MukBEF Escherichia coli 



We thank Dr. Asha Mary Joseph and other lab members for comments on the manuscript, Dr. Sandler for sharing the strain with hupA-mCherry, and Dr. Reyes-Lamothe for the strain with mukE-mYPet. We would also like to acknowledge Merck for providing permission to use images from their user manual. AB is funded by the Tata Institute of Fundamental Research and a Career Development Award from the Human Frontier of Sciences Program.


  1. 1.
    Le TB, Laub MT (2014) New approaches to understanding the spatial organization of bacterial genomes. Curr Opin Microbiol 22:15–21CrossRefGoogle Scholar
  2. 2.
    Badrinarayanan A, Le TBK, Laub MT (2015) Bacterial chromosome organization and segregation. Annu Rev Cell Dev Biol 31:171–199CrossRefGoogle Scholar
  3. 3.
    Kleckner N, Fisher JK, Stouf M et al (2014) The bacterial nucleoid: nature, dynamics and sister segregation. Curr Opin Microbiol 22:127–137CrossRefGoogle Scholar
  4. 4.
    Dorman CJ (2013) Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat Rev Microbiol 11:349–355CrossRefGoogle Scholar
  5. 5.
    Lesterlin C, Ball G, Schermelleh L et al (2014) RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249–253CrossRefGoogle Scholar
  6. 6.
    Badrinarayanan A, Le TBK, Laub MT (2015) Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. J Cell Biol 210:385–400CrossRefGoogle Scholar
  7. 7.
    Marbouty M, Le Gall A, Cattoni DI et al (2015) Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59:588–602CrossRefGoogle Scholar
  8. 8.
    Wang X, Brandão HB, Le TBK et al (2017) Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355:524–527CrossRefGoogle Scholar
  9. 9.
    Wang X, Tang OW, Riley EP et al (2014) The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr Biol 24:287–292CrossRefGoogle Scholar
  10. 10.
    Postow L, Hardy CD, Arsuaga J et al (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779CrossRefGoogle Scholar
  11. 11.
    Duigou S, Boccard F (2017) Long range chromosome organization in Escherichia coli: The position of the replication origin defines the non-structured regions and the Right and Left macrodomains. PLoS Genet 13:e1006758CrossRefGoogle Scholar
  12. 12.
    Le Gall A, Cattoni DI, Guilhas B et al (2016) Bacterial partition complexes segregate within the volume of the nucleoid. Nat Commun 7:12107CrossRefGoogle Scholar
  13. 13.
    Espéli O, Boccard F (2006) Organization of the Escherichia coli chromosome into macrodomains and its possible functional implications. J Struct Biol 156:304–310CrossRefGoogle Scholar
  14. 14.
    Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56:858–870CrossRefGoogle Scholar
  15. 15.
    Fisher JK, Bourniquel A, Witz G et al (2013) Four dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153:882–895CrossRefGoogle Scholar
  16. 16.
    Dame RT, Tark-Dame M (2016) Bacterial chromatin: converging views at different scales. Curr Opin Cell Biol 40:60–65CrossRefGoogle Scholar
  17. 17.
    Huang B, Wang W, Bates M et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813CrossRefGoogle Scholar
  18. 18.
    Stracy M, Lesterlin C, Garza de Leon F et al (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 112:E4390–E4399CrossRefGoogle Scholar
  19. 19.
    Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–857CrossRefGoogle Scholar
  20. 20.
    Nolivos S, Sherratt D (2014) The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev 38:380–392CrossRefGoogle Scholar
  21. 21.
    Nolivos S, Upton AL, Badrinarayanan A et al (2016) MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat Commun 7:10466CrossRefGoogle Scholar
  22. 22.
    Badrinarayanan A, Lesterlin C, Reyes-Lamothe R et al (2012) The Escherichia coli SMC complex, MukBEF, shapes nucleoid organization independently of DNA replication. J Bacteriol 194:4669–4676CrossRefGoogle Scholar
  23. 23.
    Wang X, Possoz C, Sherratt DJ (2005) Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli. Genes Dev 19:2367–2377CrossRefGoogle Scholar
  24. 24.
    Badrinarayanan A, Leake MC (2016) Using fluorescence recovery after photobleaching (FRAP) to study dynamics of the structural maintenance of chromosome (SMC) complex in vivo. Methods Mol Biol 1431:37–46CrossRefGoogle Scholar
  25. 25.
    Taheri-Araghi S, Bradde S, Sauls JT et al (2015) Cell-size control and homeostasis in bacteria. Curr Biol 25:385–391CrossRefGoogle Scholar
  26. 26.
    Youngren B, Nielsen HJ, Jun S et al (2014) The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev 28:71–84CrossRefGoogle Scholar
  27. 27.
    Schlimpert S, Flärdh K, Buttner M (2016) Fluorescence time-lapse imaging of the complete S venezuelae life cycle using a microfluidic device. J Vis Exp 108:53863Google Scholar
  28. 28.
    Vickridge E, Planchenault C, Cockram C et al (2017) Management of E. coli sister chromatid cohesion in response to genotoxic stress. Nat Commun 8:14618CrossRefGoogle Scholar
  29. 29.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  30. 30.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  31. 31.
    Paintdakhi A, Parry B, Campos M et al (2016) Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol 99:767–777CrossRefGoogle Scholar
  32. 32.
    Sliusarenko O, Heinritz J, Emonet T et al (2011) High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics. Mol Microbiol 80:612–627CrossRefGoogle Scholar
  33. 33.
    Stylianidou S, Brennan C, Nissen SB et al (2016) SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells. Mol Microbiol 102:690–700CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR)BangaloreIndia
  2. 2.Transdisciplinary University (TDU)BangaloreIndia

Personalised recommendations