Skip to main content

Using Cell Cycle-Restricted Alleles to Study the Chromatin Dynamics and Functions of the Structural Maintenance of Chromosomes (SMC) Complexes In Vivo

  • Protocol
  • First Online:
SMC Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2004))

  • 990 Accesses

Abstract

SMC complexes play fundamental functions in chromosome architecture and organization as well as in DNA replication and repair throughout the cell cycle. The essential nature of the SMC components makes the study of their specific functions challenging. In this chapter, we describe the application of cell cycle tags to S. cerevisiae SMC genes. The cell cycle tags regulate both gene expression and protein degradation, allowing for restriction of the gene of interest to either the S or the G2/M phase. In case of SMC genes, the tags lead to valuable mutants that can bring insights into cell cycle specific essential functions, chromatin binding pattern and functional interactions. Here, we describe the generation of the cell cycle-restricted mutants in diploid and haploid cells and the validation of their functionality with several approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeppsson K, Kanno T, Shirahige K, Sjogren C (2014) The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 15(9):601–614. https://doi.org/10.1038/nrm3857

    Article  CAS  PubMed  Google Scholar 

  2. Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17(7):399–412. https://doi.org/10.1038/nrm.2016.30

    Article  CAS  PubMed  Google Scholar 

  3. Varejao N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D (2018) DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J 37(12):pii: e98306. https://doi.org/10.15252/embj.201798306

    Article  CAS  Google Scholar 

  4. Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102(13):4777–4782. https://doi.org/10.1073/pnas.0500537102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M (2006) Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127(3):509–522. https://doi.org/10.1016/j.cell.2006.08.050

    Article  CAS  PubMed  Google Scholar 

  6. Bustard DE, Menolfi D, Jeppsson K, Ball LG, Dewey SC, Shirahige K, Sjogren C, Branzei D, Cobb JA (2012) During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks. J Biol Chem 287(14):11374–11383. https://doi.org/10.1074/jbc.M111.336263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lengronne A, Katou Y, Mori S, Yokobayashi S, Kelly GP, Itoh T, Watanabe Y, Shirahige K, Uhlmann F (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430(6999):573–578. https://doi.org/10.1038/nature02742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindroos HB, Strom L, Itoh T, Katou Y, Shirahige K, Sjogren C (2006) Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol Cell 22(6):755–767. https://doi.org/10.1016/j.molcel.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  9. D’Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T, Shirahige K, Uhlmann F (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22(16):2215–2227. https://doi.org/10.1101/gad.1675708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kegel A, Betts-Lindroos H, Kanno T, Jeppsson K, Strom L, Katou Y, Itoh T, Shirahige K, Sjogren C (2011) Chromosome length influences replication-induced topological stress. Nature 471(7338):392–396. https://doi.org/10.1038/nature09791

    Article  CAS  PubMed  Google Scholar 

  11. Menolfi D, Delamarre A, Lengronne A, Pasero P, Branzei D (2015) Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol Cell 60(6):835–846. https://doi.org/10.1016/j.molcel.2015.10.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hombauer H, Srivatsan A, Putnam CD, Kolodner RD (2011) Mismatch repair, but not heteroduplex rejection, is temporally coupled to DNA replication. Science 334(6063):1713–1716. https://doi.org/10.1126/science.1210770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karras GI, Jentsch S (2010) The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141(2):255–267. https://doi.org/10.1016/j.cell.2010.02.028

    Article  CAS  PubMed  Google Scholar 

  14. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962. https://doi.org/10.1002/yea.1142

    Article  CAS  Google Scholar 

  15. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368. https://doi.org/10.1126/science.1065810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the Branzei lab members for discussion. The work in the Branzei laboratory is supported by the Italian Association for Cancer Research (IG 18976), and European Research Council (Consolidator Grant 682190) grants to D.B. D.M. was supported by an FIRC/AIRC fellowship. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Demis Menolfi or Dana Branzei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Menolfi, D., Branzei, D. (2019). Using Cell Cycle-Restricted Alleles to Study the Chromatin Dynamics and Functions of the Structural Maintenance of Chromosomes (SMC) Complexes In Vivo. In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics