Skip to main content

Molecular-Level “Observations” of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane

  • Protocol
  • First Online:
Pharmaceutical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2000))

Abstract

We use coarse-grained molecular dynamics simulations to “observe” details of interactions between ligand-covered gold nanoparticles and a lipid bilayer model membrane. In molecular dynamics simulations, one puts the individual atoms and groups of atoms of the physical system to be “observed” into a simulation box, specifies the forms of the potential energies of interactions between them (ultimately quantum based), and lets them individually move classically according to Newton’s equations of motion, based on the forces arising from the assumed potential energy forms. The atoms that are chemically bonded to each other stay chemically bonded, following known potentials (force fields) that permit internal degrees of freedom (internal rotation, torsion, vibrations), and the interactions between nonbonded atoms are simplified to Lennard-Jones forms (in our case) and coulombic (where electrical charges are present) in which the parameters are previously optimized to reproduce thermodynamic properties or are based on quantum electronic calculations. The system is started out at a reasonable set of coordinates for all atoms or groups of atoms, and then permitted to develop according to the equations of motion, one small step (usually 10 fs time step) at a time, for millions of steps until the system is at a quasi-equilibrium (usually reached after hundreds of nanoseconds). We then let the system play out its motions further for many nanoseconds to observe the behavior, periodically taking snapshots (saving all positions and energies), and post-processing the snapshots to obtain various average descriptions of the system. Alkanethiols of various lengths serve as examples of hydrophobic ligands and methyl-terminated PEG with various numbers of monomer units serve as examples of hydrophilic ligands. Spherical gold particles of various diameters as well as gold nanorods form the core to which ligands are attached. The nanoparticles are characterized at the molecular level, especially the distributions of ligand configurations and their dependence on ligand length, and surface coverage. Self-assembly of the bilayer from an isotropic solution and observation of membrane properties that correspond well to experimental values validate the simulations. The mechanism of permeation of a gold NP coated with either a hydrophobic or a hydrophilic ligand, and its dependence on surface coverage, ligand length, core diameter, and core shape, is investigated. Lipid response such as lipid flip-flops, lipid extraction, and changes in order parameter of the lipid tails are examined in detail. The mechanism of permeation of a PEGylated nanorod is shown to occur by tilting, lying down, rotating, and straightening up. The nature of the information provided by molecular dynamics simulations permits understanding of the detailed behavior of gold nanoparticles interacting with lipid membranes which in turn helps to understand why some known systems work better than others and aids the design of new particles and improvement of methods for preparing existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandrini A, Facci P (2012) Nanoscale mechanical properties of lipid bilayers and their relevance in biomembrane organization and function. Micron 43:1212–1223. https://doi.org/10.1016/j.micron.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  2. Yuan HJ, Jameson CJ, Murad S (2009) Exploring gas permeability of lipid membranes using coarse-grained molecular dynamics. Mol Simulat 35:953–961. https://doi.org/10.1080/08927020902763839

    Article  CAS  Google Scholar 

  3. Song B, Yuan HJ, Jameson CJ, Murad S (2011) Permeation of nanocrystals across lipid membranes. Mol Phys 109(11):1511–1526. https://doi.org/10.1080/00268976.2011.569511

    Article  CAS  Google Scholar 

  4. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834. https://doi.org/10.1021/ct700324x

    Article  CAS  PubMed  Google Scholar 

  5. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111(27):7812–7824. https://doi.org/10.1021/jp071097f

    Article  CAS  PubMed  Google Scholar 

  6. Baron R, de Vries AH, Hunenberger PH, van Gunsteren WF (2006) Configurational entropies of lipids in pure and mixed bilayers from atomic level and coarse-grained molecular dynamics simulations. J Phys Chem B 110:15602–15614. https://doi.org/10.1021/jp061627s

    Article  CAS  PubMed  Google Scholar 

  7. Lee OS, Schatz GS (2009) Interaction between DNAs on a gold surface. J Phys Chem C 113(36):15941–15947. https://doi.org/10.1021/jp905469q

    Article  CAS  Google Scholar 

  8. Lee OS, Schatz GS (2009) Molecular dynamics simulation of DNA-functionalized gold nanoparticles. J Phys Chem C 113(6):2316–2321. https://doi.org/10.1021/jp8094165

    Article  CAS  Google Scholar 

  9. Chang CI, Lee WJ, Young TF, Ju SP, Chang CW, Chen HL, Chang JG (2008) Adsorption mechanism of water molecules surrounding Au nanoparticles of different sizes. J Chem Phys 128(15):154703. https://doi.org/10.1063/1.2897931

    Article  CAS  PubMed  Google Scholar 

  10. Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4(9):5421–5429. https://doi.org/10.1021/nn1010792

    Article  CAS  PubMed  Google Scholar 

  11. Hoefler L, Gyurcsanyi RE (2008) Coarse grained molecular dynamics simulation of electromechanically-gated DNA modified conical nanopores. Electroanalysis 20(3):301–307. https://doi.org/10.1002/elan.200704058

    Article  CAS  Google Scholar 

  12. Song B, Yuan HJ, Jameson CJ, Murad S (2012) Role of surface ligands in nanoparticle permeation through a model membrane: a coarse-grained molecular dynamics simulations study. Mol Phys 110(18):2181–2195. https://doi.org/10.1080/00268976.2012.668964

    Article  CAS  Google Scholar 

  13. Mang X, Zeng X, Tang B, Liu F, Ungar G, Zhang R, Mehl GH (2012) Control of anisotropic self-assembly of gold nanoparticles coated with mesogens. J Mater Chem 22(22):11101–11106. https://doi.org/10.1039/C2JM16794H

    Article  CAS  Google Scholar 

  14. Nilges M, Clore GM, Gronenborn AM (1988) Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms Circumventing problems associated with folding. FEBS Lett 239(1):129–136. https://doi.org/10.1016/0014-5793(88)80559-3

    Article  CAS  PubMed  Google Scholar 

  15. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. https://doi.org/10.1039/b806051g

    Article  CAS  PubMed  Google Scholar 

  16. Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  17. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908. https://doi.org/10.1039/b712170a

    Article  CAS  PubMed  Google Scholar 

  18. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327. https://doi.org/10.1002/smll.200400093

    Article  CAS  PubMed  Google Scholar 

  19. El-Sayed IH, Huang XH, El-Sayed M (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834. https://doi.org/10.1021/nl050074e

    Article  CAS  PubMed  Google Scholar 

  20. Luedtke WD, Landman U (1998) Structure and thermodynamics of self-assembled monolayers on gold nanocrystallities. J Phys Chem B 102(34):6566–6572. https://doi.org/10.1021/jp981745i

    Article  CAS  Google Scholar 

  21. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30. https://doi.org/10.1021/la970588w

    Article  CAS  Google Scholar 

  22. Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nano 1(1):31–63. https://doi.org/10.3390/nano1010031

    Article  CAS  Google Scholar 

  23. Cho WS, Cho M, Jeong J, Choi M, Han BS, Shin HS, Hong J, Chung BH, Jeong J, Cho MH (2010) Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 245(1):116–123. https://doi.org/10.1016/j.taap.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  24. Pan Y, Neuss S, Liefert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dachent J (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949. https://doi.org/10.1002/smll.200700378

    Article  CAS  PubMed  Google Scholar 

  25. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309–N315. PMID: 15509078

    Article  CAS  Google Scholar 

  26. Lee H, Pastor RW (2011) Coarse-grained model for PEGylated lipids: effect of PEGylation on the size and shape of self-assembled structures. J Phys Chem B 115:7830–7837. https://doi.org/10.1021/jp2020148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee H, de Vries AH, Marrink SJ, Pastor RW (2009) A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics. J Phys Chem B 113(40):13186–13194. https://doi.org/10.1021/jp9058966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rossi G, Fuchs PFJ, Barnoud J, Monticelli L (2012) A coarse-grained MARTINI model of polyethylene glycol and of polyoxyethylene alkyl ether surfactants. J Phys Chem B 116(49):14353–14362. https://doi.org/10.1021/jp3095165

    Article  CAS  PubMed  Google Scholar 

  29. Manson J, Kumar D, Meenan BJ, Dixon D (2011) Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bull 44(2):99–105. https://doi.org/10.1007/s13404-011-0015-8

    Article  CAS  Google Scholar 

  30. Chevigny C, Dalmas F, Di Cola E, Gigmes D, Bertin D, Boué F, Jestin J (2010) Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 44(1):122–133. https://doi.org/10.1021/ma101332s

    Article  CAS  Google Scholar 

  31. Wu C (2011) Simulated glass transition of poly (ethylene oxide) bulk and film: a comparative study. J Phys Chem B 115(38):11044–11052. https://doi.org/10.1021/jp205205x

    Article  CAS  PubMed  Google Scholar 

  32. Barbier D, Brown D, Grillet AC, Neyertz S (2004) Interface between end-functionalized PEG oligomers and a silica nanoparticle studied by molecular dynamics simulations. Macromolecules 37(12):4695–4710. https://doi.org/10.1021/ma0359537

    Article  CAS  Google Scholar 

  33. Ghanbari A, Rahimi M, Dehghany J (2013) Influence of surface grafted polymers on the polymer dynamics in a silica–polystyrene nanocomposite: a coarse-grained molecular dynamics investigation. J Phys Chem C 117(47):25069–25076. https://doi.org/10.1021/jp407109r

    Article  CAS  Google Scholar 

  34. Corbierre MK, Cameron NS, Sutton M, Mochrie SG, Lurio LB, Rühm A, Lennox RB (2001) Polymer-stabilized AuNPs and their incorporation into polymer matrices. J Am Chem Soc 123(42):10411–10412. https://doi.org/10.1021/ja0166287

    Article  CAS  PubMed  Google Scholar 

  35. Smith JS, Bedrov D, Smith GD (2003) A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos Sci Technol 63(11):1599–1605. https://doi.org/10.1016/S0266-3538(03)00061-7

    Article  CAS  Google Scholar 

  36. Ndoro TV, Voyiatzis E, Ghanbari A, Theodorou DN, Böhm MC, Müller-Plathe F (2011) Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: atomistic molecular dynamics simulations. Macromolecules 44(7):2316–2327. https://doi.org/10.1021/ma102833u

    Article  CAS  Google Scholar 

  37. Hong B, Panagiotopoulos AZ (2012) Molecular dynamics simulations of silica nanoparticles grafted with poly (ethylene oxide) oligomer chains. J Phys Chem B 116(8):2385–2395. https://doi.org/10.1021/jp2112582

    Article  CAS  PubMed  Google Scholar 

  38. Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl 50(9):1980–1994. https://doi.org/10.1002/anie.201002969

    Article  CAS  PubMed  Google Scholar 

  39. Xia X, Yang M, Wang Y, Zheng Y, Li Q, Chen J, Xia Y (2011) Quantifying the coverage density of poly(ethylene glycol) chains on surfaces of gold nanostructures. ACS Nano 6(1):512–522. https://doi.org/10.1021/nn2038516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeng Q, Yu A, Lu G (2010) Evaluation of interaction forces between nanoparticles by molecular dynamics simulation. Ind Eng Chem Res 49:12793–12797. https://doi.org/10.1021/ie101751v

    Article  CAS  Google Scholar 

  41. Vasir JK, Labhasetwar V (2008) Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29:4244–4252. https://doi.org/10.1016/j.biomaterials.2008.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee OS, Schatz GC (2011) Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles. Methods Mol Biol 726:283–296. https://doi.org/10.1007/978-1-61779-052-2_18

    Article  CAS  PubMed  Google Scholar 

  43. Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8:2751–2756. https://doi.org/10.1021/nl801217f

    Article  CAS  PubMed  Google Scholar 

  44. Vakarelski IU, Brown SC, Higashitani K, Moudgil BM (2007) Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 23(22):10893–10896. https://doi.org/10.1021/la701878n

    Article  CAS  PubMed  Google Scholar 

  45. Skjevik AE, Madej BD, Dickson CJ, Lin C, Teigen K, Walker RC, Gould IR (2016) Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Phys Chem Chem Phys 18:10573–10584. https://doi.org/10.1039/c5cp07379k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95:2356–2367. https://doi.org/10.1529/biophysj.108.132662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan H, Jameson CJ, Murad S (2010) Diffusion of gases across lipid membranes with OmpA channel: a molecular dynamics study. Mol Phys 108(12):1569–1581. https://doi.org/10.1080/00268976.2010.484396

    Article  CAS  Google Scholar 

  48. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469(3):159–195. PMID: 11063882

    Article  CAS  Google Scholar 

  49. Douliez JP, Leonard A, Dufourc EJ (1995) Restatement of order parameters in biomembranes–calculation of C-C bond order parameters from C-D quadrupolar splittings. Biophys J 68(5):1727–1739. https://doi.org/10.1016/S0006-3495(95)80350-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Muddana HS, Gullapalli RR, Manias E, Butler PJ (2011) Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension. Phys Chem Chem Phys 13(4):1368–1378. https://doi.org/10.1039/c0cp00430h

    Article  CAS  PubMed  Google Scholar 

  51. Ayton G, Smondyrev AM, Bardenhagen SG, McMurtry P, Voth GA (2002) Calculating the bulk modulus for a lipid bilayer with nonequilibrium molecular dynamics simulation. Biophys J 82(3):1226–1238. https://doi.org/10.1016/S0006-3495(02)75479-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen R, Poger D, Mark AE (2011) Effect of high pressure on fully hydrated DPPC and POPC bilayers. J Phys Chem B 115:1038–1044. https://doi.org/10.1021/jp110002q

    Article  CAS  PubMed  Google Scholar 

  53. Scarlata SF (1991) Compression of lipid membranes as observed at varying membrane positions. Biophys J 60(2):334–340. https://doi.org/10.1016/S0006-3495(91)82058-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong PTT, Mantsch HH (1988) Reorientational and conformational ordering processes at elevated pressures in 1,2-dioleoyl phosphatidylcholine: a Raman and infrared spectroscopic study. Biophys J 54(5):781–790. https://doi.org/10.1016/S0006-3495(88)83016-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Venable RM, Brown FLH, Pastor RW (2015) Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids 192:60–74. https://doi.org/10.1016/j.chemphyslip.2015.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Braganza LF, Worcester DL (1986) Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25(23):7484–7488. https://doi.org/10.1021/bi00371a034

    Article  CAS  PubMed  Google Scholar 

  57. Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199. https://doi.org/10.1016/j.addr.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  58. Bagley AF, Hill S, Rogers GS, Bhatia SN (2013) Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7(9):8089–8097. https://doi.org/10.1021/nn4033757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228. https://doi.org/10.1007/s10103-007-0470-x

    Article  PubMed  Google Scholar 

  60. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183. https://doi.org/10.1002/smll.201000134

    Article  CAS  PubMed  Google Scholar 

  61. McQuaid HN, Muir MF, Taggart LE, McMahon SJ, Coulter JA, Hyland WB, Jain S, Butterworth KT, Schettino G, Prise KM, Hirst DG, Botchway SW, Currell FJ (2016) Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 6:19442. https://doi.org/10.1038/srep19442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Curry T, Kopelman R, Shilo M, Popovtzer R (2014) Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol Imaging 9(1):53–61. https://doi.org/10.1002/cmmi.1563

    Article  CAS  PubMed  Google Scholar 

  63. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32. https://doi.org/10.2147/NSA.S3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carnovale C, Bryant G, Shukla R, Bansal V (2016) Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity. Prog Mater Sci 83:152–190. https://doi.org/10.1016/j.pmatsci.2016.04.003

    Article  CAS  Google Scholar 

  65. Etame AB, Smith CA, Chan WC, Rutka JT (2011) Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine 7(6):992–1000. https://doi.org/10.1016/j.nano.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  66. Terrill RH, Postlethwaite TA, Chen C, Poon CD, Terzis A, Chen A, Hutchison JE, Clark MR, Wingall G, Londono JD, Superfine R, Falvo M, Johnson CS Jr, Samulski ET, Murray RW (1995) Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc 117(50):12537–12548. https://doi.org/10.1021/ja00155a017

    Article  CAS  Google Scholar 

  67. Oroskar PA, Jameson CJ, Murad S (2016) Simulated permeation and characterization of PEGylated gold nanoparticles in a lipid bilayer system. Langmuir 32(30):7541–7555. https://doi.org/10.1021/acs.langmuir.6b01740

    Article  CAS  PubMed  Google Scholar 

  68. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4):715–728. https://doi.org/10.2217/nnm.11.19

    Article  CAS  PubMed  Google Scholar 

  69. Oroskar PA, Jameson CJ, Murad S (2017) Molecular dynamics simulations reveal how characteristics of surface and permeant affect permeation events at the surface of soft matter. Mol Simulat 43(5):1–28. https://doi.org/10.1080/08927022.2016.1268259

    Article  CAS  Google Scholar 

  70. Van Lehn RC, Alexander-Katz A (2014) Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins. J Phys Chem B 118(44):12586–−12598. https://doi.org/10.1021/jp506239p

    Article  CAS  PubMed  Google Scholar 

  71. Song B, Yuan HJ, Pham SV, Jameson CJ, Murad S (2012) Nanoparticle permeation induces water penetration, ion transport, and lipid flip-flop. Langmuir 28(49):16989–17000. https://doi.org/10.1021/la302879r

    Article  CAS  PubMed  Google Scholar 

  72. Gurtovenko AA, Vattulainen I (2007) Molecular mechanism for lipid flip-flops. J PhysChem B 111(48):13554–13559. https://doi.org/10.1021/jp077094k

    Article  CAS  Google Scholar 

  73. Tieleman DP, Marrink SJ (2006) Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J Am Chem Soc 128(38):12462–12467. https://doi.org/10.1021/ja0624321

    Article  CAS  PubMed  Google Scholar 

  74. Sapay N, Bennett WFD, Tieleman DP (2009) Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids. Soft Matter 5:3295–3302. https://doi.org/10.1039/b902376c

    Article  CAS  Google Scholar 

  75. Contreras FX, Sánchez-Magraner L, Alonso A, Goñi FM (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584(9):1779–1786. https://doi.org/10.1016/j.febslet.2009.12.049

    Article  CAS  PubMed  Google Scholar 

  76. Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44(5):264–277. https://doi.org/10.1080/10409230903193307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemist 30(5):1163–1173. https://doi.org/10.1021/bi00219a001

    Article  CAS  Google Scholar 

  78. Ding HM, Tian WD, Ma YQ (2012) Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 6:1230–1238. https://doi.org/10.1021/nn2038862

    Article  CAS  PubMed  Google Scholar 

  79. Vacha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11(12):5391–5395. https://doi.org/10.1021/nl2030213

    Article  CAS  PubMed  Google Scholar 

  80. Yang K, Ma YQ (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583. https://doi.org/10.1038/nnano.2010.141

    Article  CAS  PubMed  Google Scholar 

  81. Huang CJ, Zhang Y, Yuan HY, Gao HJ, Zhang S (2013) Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett 13:4546–4550. https://doi.org/10.1021/nl402628n

    Article  CAS  PubMed  Google Scholar 

  82. Yi X, Shi X, Gao H (2014) A universal law for cell uptake of one-dimensional nanomaterials. Nano Lett 14(2):1049–1055. https://doi.org/10.1021/nl404727m

    Article  CAS  PubMed  Google Scholar 

  83. Yang K, Yuan B, Ma YQ (2013) Influence of geometric nanoparticle rotation on cellular internalization process. Nanoscale 5:7998–8006. https://doi.org/10.1039/C3NR01561K

    Article  CAS  PubMed  Google Scholar 

  84. Zhang HZ, Wang L, Yuan B, Yang K, Ma YQ (2014) Effect of receptor structure and length on the wrapping of a nanoparticle by a lipid membrane. Materials 7:3855–3866. https://doi.org/10.3390/ma7053855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen YB, Liu YH, Zeng Y, Mao W, Hu L, Mao ZL, Xu HQ (2015) Optimal aspect ratio of endocytosed spherocylindrical nanoparticle. Front Physiol 10:108702. https://doi.org/10.1007/s11467-014-0444-y

    Article  Google Scholar 

  86. Yue T, Zhang X, Huang F (2015) Molecular modeling of membrane responses to the adsorption of rotating nanoparticles: promoted cell uptake and mechanical membrane rupture. Soft Matter 11(3):456–465. https://doi.org/10.1039/c4sm01760a

    Article  CAS  PubMed  Google Scholar 

  87. Li Y, Chen X, Gu N (2008) Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. J Phys Chem B 112(51):16647–16653. https://doi.org/10.1021/jp8051906

    Article  CAS  PubMed  Google Scholar 

  88. Oroskar PA, Jameson CJ, Murad S (2015) Surface-functionalized nanoparticle permeation triggers lipid displacement and water and ion leakage. Langmuir 31(3):1074–1085. https://doi.org/10.1021/la503934c

    Article  CAS  PubMed  Google Scholar 

  89. Mathai JC, Tristram-Nagle S, Nagle JF, Zeidel ML (2008) Structural determinants of water permeability through the lipid membrane. J Gen Physiol 131(1):69–76. https://doi.org/10.1085/jgp.200709848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gurtovenko AA, Vattulainen I (2007) Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys J 92(6):1878–1890. https://doi.org/10.1529/biophysj.106.094797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leontiadou H, Mark AE, Marrink SJ (2007) Ion transport across transmembrane pores. Biophys J 92:4209–4215. https://doi.org/10.1529/biophysj.106.101295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bennett WFD, Tieleman DP (2011) Water defect and pore formation in atomistic and coarse-grained lipid membranes: pushing the limits of coarse graining. J Chem Theory Comput 7(9):2981–2988. https://doi.org/10.1021/ct200291v

    Article  CAS  PubMed  Google Scholar 

  93. Bennett WFD, Sapay N, Tieleman DP (2014) Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J 106(1):210–219. https://doi.org/10.1016/j.bpj.2013.11.4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang S, Larson RG (2014) Water channel formation and ion transport in linear and branched lipid bilayers. Phys Chem Chem Phys 16(16):7251–7262. https://doi.org/10.1039/c3cp55116d

    Article  CAS  PubMed  Google Scholar 

  95. Koshiyama K, Yano T, Kodama T (2010) Self-organization of a stable pore structure in a phospholipid bilayer. Phys Rev Lett 105(1):018105. https://doi.org/10.1103/PhysRevLett.105.018105

    Article  CAS  PubMed  Google Scholar 

  96. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347. https://doi.org/10.1016/j.jconrel.2006.06.017

    Article  CAS  PubMed  Google Scholar 

  97. Alekseeva AV, Bogatyrev VA, Dykman LA, Khlebtsov BN, Trachuk LA, Melnikov AG, Khlebtsov NG (2005) Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay. Appl Opt 44(29):6285–6295. https://doi.org/10.1364/AO.44.006285

    Article  CAS  PubMed  Google Scholar 

  98. El-Sayed MA, Shabaka AA, El-Shabrawy OA, Yassin NA, Mahmoud SS, El-Shenawy SM, Emad AA, Eisa WH, Farag NM, El-Shaer MA, Salah N, Al-Abd AM (2013) Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in Ehrlich carcinoma solid tumor model. PLoS One 8(10):e76207. https://doi.org/10.1371/journal.pone.0076207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120. https://doi.org/10.1021/ja057254a

    Article  CAS  PubMed  Google Scholar 

  100. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2(1):125–132. https://doi.org/10.2217/17435889.2.1.125

    Article  CAS  Google Scholar 

  101. Li CZ, Male KB, Hrapovic S, Luong JHT (2005) Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem Commun 2005(31):3924–3926. https://doi.org/10.1039/B504186D

    Article  Google Scholar 

  102. Lin KY, Bagley AF, Zhang AY, Karl DL, Yoon SS, Bhatia SN (2010) Gold nanorod photothermal therapy in a genetically engineered mouse model of soft tissue sarcoma. Nano Life 1(3–4):277–287. https://doi.org/10.1142/S1793984410000262

    Article  Google Scholar 

  103. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103(16):3073–3077. https://doi.org/10.1021/jp990183f

    Article  CAS  Google Scholar 

  104. Maestro LM, Camarillo E, Sánchez-Gil JA, Rodríguez-Oliveros R, Ramiro-Bargueño J, Caamaño AJ, Jaque D (2014) Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows. RSC Adv 4(96):54122–54129. https://doi.org/10.1039/C4RA08956A

    Article  CAS  Google Scholar 

  105. Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24(36):4811–4841. https://doi.org/10.1002/adma.201201690

    Article  CAS  PubMed  Google Scholar 

  106. von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally-guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69(9):3892–3900. https://doi.org/10.1158/0008-5472.CAN-08-4242

    Article  CAS  PubMed Central  Google Scholar 

  107. von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21(31):3175–3180. https://doi.org/10.1002/adma.200803464

    Article  CAS  Google Scholar 

  108. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng JX (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A 102(44):15752–15756. https://doi.org/10.1073/pnas.0504892102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xiao Y, Hong H, Matson VZ, Javadi A, Xu W, Yang Y, Zhang Y, Engle JW, Nickles RJ, Cai W, Steeber DA, Gong S (2012) Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2(8):757–768. https://doi.org/10.7150/thno.4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhu J, Huang L, Zhao J, Wang Y, Zhao Y, Hao L, Lu Y (2005) Shape dependent resonance light scattering properties of gold nanorods. Mater Sci Eng B 121(3):199–203. https://doi.org/10.1016/j.mseb.2005.03.022

    Article  CAS  Google Scholar 

  111. Adrian NNM, Cheng YY, Ong NMN, Kamaruddin TT, Rozlan E, Schmidt TW, Duong HTT, Boyer C (2016) Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym Chem 7:2888–2903. https://doi.org/10.1039/C6PY00465B

    Article  Google Scholar 

  112. Oroskar PA, Jameson CJ, Murad S (2016) Rotational behavior of PEGylated gold nanorods in a lipid bilayer system. Mol Phys 115(9–12):1122–1143. https://doi.org/10.1080/00268976.2016.1248515

    Article  CAS  Google Scholar 

  113. Nguyen TM, Gigault J, Hackley VA (2014) PEGylated gold nanorod separation based on aspect ratio: characterization by asymmetric-flow field flow fractionation with UV-Vis detection. Anal Bioanal Chem 406(6):1651–1659. https://doi.org/10.1007/s00216-013-7318-y

    Article  CAS  PubMed  Google Scholar 

  114. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31(30):7606–7619. https://doi.org/10.1016/j.biomaterials.2010.06.051

    Article  CAS  PubMed  Google Scholar 

  115. Liu XX, Wu FC, Tian Y, Wu M, Zhou Q, Jiang S, Niu ZW (2016) Size dependent cellular uptake of rod-like bionanoparticles with different aspect ratios. Sci Rep 6:24567. https://doi.org/10.1038/srep24567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gu Y, Di XW, Sun W, Wang GF, Fang N (2012) Three-dimensional super-localization and tracking of single gold nanoparticles in cells. Anal Chem 84:4111–4117. https://doi.org/10.1021/ac300249d

    Article  CAS  PubMed  Google Scholar 

  117. Gu Y, Wang GF, Fang N (2013) Simultaneous single-particle superlocalization and rotational tracking. ACS Nano 7:1658–1665. https://doi.org/10.1021/nn305640y

    Article  CAS  PubMed  Google Scholar 

  118. Xu D, He Y, Yeung ES (2014) Direct imaging of transmembrane dynamics of single nanoparticles with dark-field microscopy: improved orientation tracking at cell sidewall. Anal Chem 86(7):3397–3404. https://doi.org/10.1021/ac403700u

    Article  CAS  PubMed  Google Scholar 

  119. Shi XH, von dem Bussche A, Hurt RH, Kane AB, Gao HJ (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6(11):714–719. https://doi.org/10.1038/nnano.2011.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen L, Xiao S, Zhu H, Wang L, Liang HJ (2016) Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter 12:2632–2641. https://doi.org/10.1039/c5sm01869b

    Article  CAS  PubMed  Google Scholar 

  121. Ding HM, Ma YQ (2015) Theoretical and computational investigations of nanoparticle–biomembrane interactions in cellular delivery. Small 11:1055–1071. https://doi.org/10.1002/smll.201401943

    Article  CAS  PubMed  Google Scholar 

  122. Zhang S, Gao H, Bao G (2015) Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9):8655–8671. https://doi.org/10.1021/acsnano.5b03184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li Y, Kroger M, Liu WK (2014) Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials 35:8467–8478. https://doi.org/10.1016/j.biomaterials.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  124. Li Y, Kröger M, Liu WK (2015) Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale 7:16631–16646. https://doi.org/10.1039/C5NR02970H

    Article  CAS  PubMed  Google Scholar 

  125. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315. https://doi.org/10.1016/j.addr.2008.03.016

    Article  CAS  PubMed  Google Scholar 

  126. Zhang GD, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30(10):1928–1936. https://doi.org/10.1016/j.biomaterials.2008.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov BN, Kogan BY, Akchurin GG, Shantrocha AV, Maksimova IL, Khlebtsov NG, Tuchin VV (2009) Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. J Biophotonics 2(5):292–302. https://doi.org/10.1002/jbio.200910005

    Article  CAS  PubMed  Google Scholar 

  128. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915. https://doi.org/10.1021/nl900031y

    Article  CAS  PubMed  Google Scholar 

  129. England CG, Gobin AM, Frieboes HB (2015) Evaluation of uptake and distribution of gold nanoparticles in solid tumors. Eur Phys J Plus 130:231. https://doi.org/10.1140/epjp/i2015-15231-1

    Article  PubMed  PubMed Central  Google Scholar 

  130. Balogh L, Nigavekar SS, Nair BM, Lesniak W, Zhang C, Sung LY, Kariapper MST, El-Jawahri A, Llanes M, Bolton B, Mamou F, Tan W, Hutson A, Minc L, Khan MK (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 3:281–296. https://doi.org/10.1016/j.nano.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  131. Leroueil PR, Hong SP, Mecke A, Baker JR Jr, Orr BG, Holl MMB (2007) Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc Chem Res 40:335–342. https://doi.org/10.1021/ar600012y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. https://doi.org/10.1021/bc049951i

    Article  CAS  PubMed  Google Scholar 

  133. Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, Torelli MD, Hamers RJ, Murphy CJ, Haynes CL (2015) Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci 6:5186–5196. https://doi.org/10.1039/C5SC00792E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gkeka P, Angelikopoulos P, Sarkisov L, Cournia Z (2014) Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion. PLoS Comput Biol 10(12):e1003917. https://doi.org/10.1371/journal.pcbi.1003917

    Article  PubMed  PubMed Central  Google Scholar 

  135. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79. https://doi.org/10.1016/j.addr.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  136. Hinterwirth H, Kappel S, Waitz T, Prohaska T, Lindner W, Lämmerhofer M (2013) Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma–mass spectrometry. ACS Nano 7(2):1129–1136. https://doi.org/10.1021/nn306024a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu HY, Doane TL, Cheng Y, Lu F, Srinivasan S, Zhu JJ, Burda C (2015) Control of surface ligand density on PEGylated gold nanoparticles for optimized cancer cell uptake. Part Part Syst Charact 32(2):197–204. https://doi.org/10.1002/ppsc.201400067

    Article  CAS  Google Scholar 

  138. Rahme K, Chen L, Hobbs RG, Morris MA, O’Driscoll C, Holmes JD (2013) PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv 3(17):6085–6094. https://doi.org/10.1039/C3RA22739A

    Article  CAS  Google Scholar 

  139. Zhang HZ, Ji Q, Huang Q, Zhang S, Yuan B, Yang K, Ma YQ (2015) Cooperative transmembrane penetration of nanoparticles. Sci Rep 5:10525. https://doi.org/10.1038/srep10525

    Article  PubMed  PubMed Central  Google Scholar 

  140. Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–595. https://doi.org/10.1038/nmat2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Stirling J, Lekkas I, Sweetman A, Djuranovic P, Guo Q, Pauw B, Granwehr J, Lévy R, Moriarty P (2014) Critical assessment of the evidence for striped nanoparticles. PLoS One 9(11):e108482. https://doi.org/10.1371/journal.pone.0108482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ge XW, Ke PC, Davis TP, Ding F (2015) A thermodynamics model for the emergence of a stripe-like binary SAM on a nanoparticle surface. Small 11(37):4894–4899. https://doi.org/10.1002/smll.201501049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Carney RP, DeVries GA, Dubois C, Kim H, Kim JY, Singh C, Ghorai PK, Tracy JB, Stiles RL, Murray RW, Glotzer SC, Stellacci F (2008) Size limitations for the formation of ordered striped nanoparticles. J Am Chem Soc 130:798–799. https://doi.org/10.1021/ja077383m

    Article  CAS  PubMed  Google Scholar 

  144. Velachi V, Bhandary D, Singh JK, Cordeiro MNDS (2015) Structure of mixed self-assembled monolayers on gold nanoparticles at three different arrangements. J Phys Chem C 119(6):3199–3209. https://doi.org/10.1021/jp512144g

    Article  CAS  Google Scholar 

  145. Velachi V, Bhandary D, Singh JK, Cordeiro MNDS (2016) Striped gold nanoparticles: new insights from molecular dynamics simulations. J Chem Phys 144(24):244710. https://doi.org/10.1063/1.4954980

    Article  CAS  PubMed  Google Scholar 

  146. Debierre-Grockiego F (2010) Glycolipids are potential targets for protozoan parasite diseases. Trends Parasitol 26:404–411. https://doi.org/10.1016/j.pt.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  147. Kapla J, Stevensson B, Dahlberg M, Maliniak A (2012) Molecular dynamics simulations of membranes composed of glycolipids and phospholipids. J Phys Chem B 116(1):244–252. https://doi.org/10.1021/jp209268p

    Article  CAS  PubMed  Google Scholar 

  148. Polley A, Vemparala S, Rao M (2012) Atomistic simulations of a multicomponent asymmetric lipid bilayer. J Phys Chem B 116(45):13403–13410. https://doi.org/10.1021/jp3032868

    Article  CAS  PubMed  Google Scholar 

  149. Kindt JT (2011) Atomistic simulation of mixed-lipid bilayers: mixed methods for mixed membranes. Mol Simulat 37(7):516–524. https://doi.org/10.1080/08927022.2011.561434

    Article  CAS  Google Scholar 

  150. Hong C, Tieleman DP, Wang Y (2014) Microsecond molecular dynamics simulations of lipid mixing. Langmuir 30(40):11993–12001. https://doi.org/10.1021/la502363b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Grouleff J, Irudayam SJ, Skeby KK, Schiøtt B (2015) The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim Biophys Acta 1848(9):1783–1795. https://doi.org/10.1016/j.bbamem.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  152. Gumí-Audenis B, Costa L, Carlá F, Comin F, Sanz F, Giannotti MI (2016) Structure and nanomechanics of model membranes by atomic force microscopy and spectroscopy: insights into the role of cholesterol and sphingolipids. Membranes 6:58. https://doi.org/10.3390/membranes6040058

    Article  CAS  PubMed Central  Google Scholar 

  153. Rønnest AK, Peters GH, Hansen FY, Taub H, Miskowiec A (2016) Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes. J Chem Phys 144:144904. https://doi.org/10.1063/1.4945278

    Article  CAS  PubMed  Google Scholar 

  154. Wassenaar TA, Pluhackova K, Boeckmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theory Comput 10(2):676–690. https://doi.org/10.1021/ct400617g

    Article  CAS  PubMed  Google Scholar 

  155. Brocos P, Mendoza-Espinosa P, Castillo R, Mas-Oliva J, Pineiro A (2012) Multiscale molecular dynamics simulations of micelles: coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter 8(34):9005–9014. https://doi.org/10.1039/c2sm25877c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been funded by a grant from the National Science Foundation (Grant No. CBET/1263107/1545560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Murad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oroskar, P.A., Jameson, C.J., Murad, S. (2019). Molecular-Level “Observations” of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics