Skip to main content

Surface Modification of Nanoparticles and Nanovesicles via Click-Chemistry

  • Protocol
  • First Online:
Pharmaceutical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2000))

Abstract

Surface modification of nanocarriers offers the possibility of targeted drug delivery, which is of major interest in modern pharmaceutical science. Click-chemistry affords an easy and fast way to modify the surface with targeting structures under mild reaction conditions. Here we describe our current method for the post-preparational surface modification of multifunctional sterically stabilized (stealth) liposomes via copper-catalyzed azide–alkyne cycloaddition (CuAAC) and inverse electron demand Diels-Alder norbornene–tetrazine cycloaddition (IEDDA). We emphasize the use of these in a one-pot orthogonal reaction for deep investigation on stability and targeting of nanocarriers. As the production of clickable amphiphilic polymers is a limiting factor in most cases, we also describe our nanocarrier preparation technique called dual centrifugation, which enables the formulation of liposomes on a single-digit milligram scale of total lipid mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strebhardt K, Ullrich A et al (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    Article  CAS  Google Scholar 

  2. Holmberg E et al (1989) Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem Biophys Res Commun 175:1272–1278

    Article  Google Scholar 

  3. Uster PS et al (1996) Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett 386:243–246

    Article  CAS  Google Scholar 

  4. Gantert M et al (2009) Receptor-specific targeting with liposomes in vitro based on sterol-PEG(1300) anchors. Int J Pharm 469:168–178

    Google Scholar 

  5. Allen TM, Sapra P, Moase E (2002) Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett 7:889–894

    CAS  PubMed  Google Scholar 

  6. Fritz T et al (2014) Click modification of multifunctional liposomes bearing hyperbranched polyether chains. Biomacromolecules 15:3114–3118

    Article  Google Scholar 

  7. Bangham AD (1983) The liposome letters. Academic Press, New York

    Google Scholar 

  8. Bangham AD et al (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  Google Scholar 

  9. Hofmann AM et al (2010) Hyperbranched polyglycerol-based lipids via oxyanionic polymerization: toward multifunctional stealth liposomes. Biomacromolecules 11:568–574

    Article  CAS  Google Scholar 

  10. Hofmann AM, Wurm F, Frey H (2011) Rapid access to polyfunctional lipids with complex architecture via oxyanionic ring-opening polymerization. Macromolecules 44:4648–4657

    Article  CAS  Google Scholar 

  11. Müller SS et al (2013) Polyether-based lipids synthesized with an epoxide construction kit: multivalent architectures for functional liposomes. In: Scholz C, Kressler J (eds) Tailored polymer architectures for pharmaceutical and biomedical applications, chap. 2. American Chemical Society, Washington DC, pp 11–25

    Chapter  Google Scholar 

  12. Papahadjopoulos D et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88(24):11460–11464

    Article  CAS  Google Scholar 

  13. Kronberg B et al (1990) Preparation and evaluation of sterically stabilized liposomes: colloidal stability, serum stability, macrophage uptake, and toxicity. J Pharm Sci 79(8):667–671

    Article  CAS  Google Scholar 

  14. Allen TM et al (1995) Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 16(2–3):257–284

    Google Scholar 

  15. Allen TM et al (1992) Stealth liposomes: an improved sustained release system for 1-β-D-arabinofuranosylcytosine. Cancer Res 52:2431–2439

    CAS  PubMed  Google Scholar 

  16. Blume G, Cevs G (1990) Liposomes for the sustained drug release in vivo. Biochim Biophys Acta 1029(1):91–97

    Article  CAS  Google Scholar 

  17. Fritz T, Voigt M et al (2016) Orthogonal click conjugation to the liposomal surface reveals the stability of the lipid anchorage as crucial for targeting. Chem Eur J 22(33):11578–11582

    Article  CAS  Google Scholar 

  18. Himo F et al (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127:210–216

    Article  CAS  Google Scholar 

  19. Rostovstev VV et al (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  Google Scholar 

  20. Turnoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  Google Scholar 

  21. Agard NJ, Prescher J, Bertozzi CR (2004) A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc 126(46):15046–15047

    Article  CAS  Google Scholar 

  22. Blackman ML, Royzen M, Fox JM (2008) The Tetrazine ligation: fast bioconjugation on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 130:13518

    Article  CAS  Google Scholar 

  23. Devaraj NK, Weissleder R, Hilderbrand SA (2008) Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjugate Chem 19(12):2297–2299

    Article  CAS  Google Scholar 

  24. Han H et al (2010) Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. J Am Chem Soc 123(23):7838–7839

    Article  Google Scholar 

  25. Massing U, Cicko S, Ziroli V (2008) Dual asymmetric centrifugation (DAC)—a new technique for liposome preparation. J Control Release 125(1):16–24

    Article  CAS  Google Scholar 

  26. Hirsch M et al (2009) Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation (DAC). J Control Release 135(1):80–88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Rotanta 400 dual centrifuge prototype was kindly provided by Andreas Hettich GmbH, Tuttlingen, Germany. The authors would like to thank the collaborative research center SFB 1066 (Project A7) by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Helm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Voigt, M., Fritz, T., Worm, M., Frey, H., Helm, M. (2019). Surface Modification of Nanoparticles and Nanovesicles via Click-Chemistry. In: Weissig, V., Elbayoumi, T. (eds) Pharmaceutical Nanotechnology. Methods in Molecular Biology, vol 2000. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9516-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9516-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9515-8

  • Online ISBN: 978-1-4939-9516-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics