Skip to main content

Optimized Negative-Staining Protocol for Lipid–Protein Interactions Investigated by Electron Microscopy

  • Protocol
  • First Online:
Book cover Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2003))

Abstract

A large number of proteins are capable of inserting themselves into lipids, and interacting with membranes, such as transmembrane proteins and apolipoproteins. Insights into the lipid-protein interactions are important in understanding biological processes, and the structure of proteins at the lipid binding stage can help identify their roles and critical functions. Previously, such structural determination was challenging to obtain because the traditional methods, such as X-ray crystallography, are unable to capture the conformational and compositional heterogeneity of protein–lipid complexes. Electron microscopy (EM) is an alternative approach to determining protein structures and visualizing lipid–protein interactions directly, and negative-staining (OpNS), a subset of EM techniques, is a rapid, frequently used qualitative approach. The concern, however, is that current NS protocols often generate artifacts with lipid-related proteins, such as rouleaux formation from lipoproteins. To overcome this artifact formation, Ren and his colleagues have refined early NS protocols, and developed an optimized NS protocol that validated by comparing images of lipoproteins from cryo-electron microscopy (cryo-EM). This optimized NS protocol produces “near native-state” particle images and high contrast images of the protein in its native lipid-binding state, which can be used to create higher-quality three-dimensional (3D) reconstruction by single-particle analysis and electron tomography (e.g. IPET). This optimized protocol is thus a promising hands-on approach for examining the structure of proteins at their lipid-binding status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichow SL, Gonen T (2009) Lipid-protein interactions probed by electron crystallography. Curr Opin Struct Biol 19:560–565. https://doi.org/10.1016/j.sbi.2009.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gennis RB, Jonas A (1977) Protein-lipid interactions. Annu Rev Biophys Bioeng 6:195–238

    Article  CAS  Google Scholar 

  3. Gonen T, Cheng YF, Sliz P et al (2005) Lipid-protein interactions in double-layered two-dimensional AQPO crystals. Nature 438:633–638. https://doi.org/10.1038/nature04321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liao M, Cao E, Julius D et al (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112. https://doi.org/10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herzik MA Jr, Wu M et al (2017) Achieving better-than-3-A resolution by single-particle cryo-EM at 200 keV. Nat Methods 14:1075–1078. https://doi.org/10.1038/nmeth.4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orlova EV, Sherman MB, Chiu W et al (1999) Three-dimensional structure of low density lipoproteins by electron cryomicroscopy. Proc Natl Acad Sci U S A 96:8420–8425

    Article  CAS  Google Scholar 

  7. Ren G, Rudenko G, Ludtke SJ et al (2010) Model of human low-density lipoprotein and bound receptor based on CryoEM. Proc Natl Acad Sci U S A 107:1059–1064. https://doi.org/10.1073/pnas.0908004107

    Article  CAS  PubMed  Google Scholar 

  8. Kumar V, Butcher SJ, Oorni K et al (2011) Three-dimensional cryoEM reconstruction of native LDL particles to 16 Angstrom resolution at physiological body temperature. PLoS One 6:e18841. https://doi.org/10.1371/journal.pone.0018841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  CAS  Google Scholar 

  10. Frank J, Radermacher M, Penczek P et al (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  CAS  Google Scholar 

  11. Zhang L, Song J, Newhouse Y et al (2010) An optimized negative-staining protocol of electron microscopy for apoE4 POPC lipoprotein. J Lipid Res 51:1228–1236

    Article  CAS  Google Scholar 

  12. Zhang L, Song J, Cavigiolio G et al (2011) Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J Lipid Res 52:175–184

    Article  CAS  Google Scholar 

  13. Ohi M, Li Y, Cheng Y et al (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol Proced 6:23–34

    Article  CAS  Google Scholar 

  14. Oliver RM (1973) Negative stain electron microscopy of protein macromolecules. Methods Enzymol 27:616–672

    CAS  PubMed  Google Scholar 

  15. Woeste S, Demchick P (1991) New version of the negative stain. Appl Environ Microbiol 57:1858–1859

    Article  CAS  Google Scholar 

  16. Bradley DE (1962) A study of the negative staining process. J Gen Microbiol 29:503–516

    Article  CAS  Google Scholar 

  17. Cunningham WP, Staehelin LA, Rubin RW et al (1974) Effects of phosphotungstate negative staining on the morphology of the isolated Golgi apparatus. J Cell Biol 62:491–504

    Article  CAS  Google Scholar 

  18. Egelman EH, Amos LA (2009) Electron microscopy of helical filaments: rediscovering buried treasures in negative stain. BioEssays 31:909–911

    Article  CAS  Google Scholar 

  19. Melchior V, Hollingshead CJ, Cahoon ME (1980) Stacking in lipid vesicle-tubulin mixtures is an artifact of negative staining. J Cell Biol 86:881–884

    Article  CAS  Google Scholar 

  20. Zhang L, Ren G (2012) IPET and FETR: experimental approach for studying molecular structure dynamics by cryo-electron tomography of a single-molecule structure. PLoS One 7:e30249. https://doi.org/10.1371/journal.pone.0030249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Segrest JP, Jones MK, Catte A et al (2015) Surface density-induced pleating of a lipid monolayer drives nascent high-density lipoprotein assembly. Structure 23:1214–1226. https://doi.org/10.1016/j.str.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghosh M, Ren G, Simonsen JB et al (2014) Cationic lipid nanodisks as an siRNA delivery vehicle. Biochem Cell Biol 92:200–205. https://doi.org/10.1139/bcb-2014-0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ikon N, Shearer J, Liu J et al (2017) A facile method for isolation of recombinant human apolipoprotein A-I from E. coli. Protein Expr Purif 134:18–24. https://doi.org/10.1016/j.pep.2017.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones MK, Zhang L, Catte A (2010) Assessment of the validity of the double superhelix model for reconstituted high density lipoproteins: a combined computational-experimental approach. J Biol Chem 285:41161–41171. https://doi.org/10.1074/jbc.M110.187799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen B, Ren X, Neville T et al (2009) Apolipoprotein AI tertiary structures determine stability and phospholipid-binding activity of discoidal high-density lipoprotein particles of different sizes. Protein Sci 18:921–935. https://doi.org/10.1002/pro.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang M, Lei D, Peng B et al (2017) Assessing the mechanisms of cholesteryl ester transfer protein inhibitors. Biochim Biophys Acta 1862:1606–1617. https://doi.org/10.1016/j.bbalip

    Article  CAS  Google Scholar 

  27. Zhang M, Charles R, Tong H et al (2015) HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation. Sci Rep 5:8741. https://doi.org/10.1038/srep08741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rames M, Yu Y, Ren G (2014) Optimized negative staining: a high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. J Vis Exp 90:e51087. https://doi.org/10.3791/51087

    Article  CAS  Google Scholar 

  29. Zhang L, Tong H, Garewal M et al (2013) Optimized negative-staining electron microscopy for lipoprotein studies. Biochim Biophys Acta 1830:2150–2159. https://doi.org/10.1016/j.bbagen.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Yan F, Zhang S et al (2012) Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat Chem Biol 8:342–349. https://doi.org/10.1038/nchembio.796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang M, Zhai X, Li J et al (2018) Structural basis of the lipid transfer mechanism of phospholipid transfer protein (PLTP). Biochim Biophys Acta 1863:1082–1094. https://doi.org/10.1016/j.bbalip.2018.06.001

    Article  CAS  Google Scholar 

  32. Yu Y, Kuang YL, Lei D et al (2016) Polyhedral 3D structure of human plasma very low density lipoproteins by individual particle cryo-electron tomography1. J Lipid Res 57:1879–1888. https://doi.org/10.1194/jlr.M070375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren G, Zhang S, Cavigiolio G et al (2010) Cholesteryl ester transfer protein penetrates lipoproteins for cholesteryl ester transfer. Biophys J 98:36a

    Article  Google Scholar 

  34. Ercius P, Alaidi O, Rames MJ (2015) Electron tomography: a three-dimensional analytic tool for hard and soft materials research. Adv Mater 27:5638–5663. https://doi.org/10.1002/adma.201501015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei D, Rames M, Zhang X et al (2016) Insights into the tunnel mechanism of cholesteryl ester transfer protein through all-atom molecular dynamics simulations. J Biol Chem 291:14034–14044. https://doi.org/10.1074/jbc.M116.715565.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lei D, Marras AE, Liu J et al (2018) Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat Commun 9:592. https://doi.org/10.1038/s41467-018-03018-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang L, Lei D, Smith JM et al (2016) Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography. Nat Commun 7:11083. https://doi.org/10.1038/ncomms11083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Li H, Zhang L et al (2016) Fully mechanically controlled automated electron microscopic tomography. Sci Rep 6:29231. https://doi.org/10.1038/srep29231

    Article  PubMed  PubMed Central  Google Scholar 

  39. Deng X, Qin X, Chen L et al (2016) Large conformational changes of insertion 3 in human glycyl-tRNA synthetase (hGlyRS) during catalysis. J Biol Chem 29:5740–5752. https://doi.org/10.1074/jbc.M115.679126

    Article  CAS  Google Scholar 

  40. Lu Z, Reddy MV, Liu J et al (2016) Molecular architecture of contactin-associated protein-like 2 (CNTNAP2) and its interaction with contactin 2 (CNTN2). J Biol Chem 291:24133–24147. https://doi.org/10.1074/jbc.M116.748236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu Z, Wang Y, Chen F et al (2014) Calsyntenin-3 molecular architecture and interaction with neurexin 1alpha. J Biol Chem 289:34530–34542. https://doi.org/10.1074/jbc.M114.606806

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cho WJ, Shin L, Ren G et al (2009) Structure of membrane-associated neuronal SNARE complex: implication in neurotransmitter release. J Cell Mol Med 13:4161–4165. https://doi.org/10.1111/j.1582-4934.2009.00895.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cho WJ, Ren G, Lee JS et al (2009) Nanoscale 3D contour map of protein assembly within the astrocyte porosome complex. Cell Biol Int 33:224–229. https://doi.org/10.1016/j.cellbi.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  44. Cho WJ, Ren G, Jena BP (2008) EM 3D contour maps provide protein assembly at the nanoscale within the neuronal porosome complex. J Microsc 232:106–111. https://doi.org/10.1111/j.1365-2818.2008.02088.x

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Ren G (2010) Determining the dynamic protein structure by individual-particle electron tomography: an individual antibody structure at a nanometer resolution. Biophys J 98:441a

    Google Scholar 

  46. Zhang L, Kaspar A, Woodnutt G et al (2010) Monitoring the structural changes of conjugated antibodies by high-resolution electron microscopy and individual-particle electron tomography. Biophys J 98:440a–441a

    Google Scholar 

  47. Zhang X, Zhang L, Tong H et al (2015) 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography. Sci Rep 5:9803. https://doi.org/10.1038/srep09803

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tong H, Zhang L, Kaspar A et al (2013) Peptide-conjugation induced conformational changes in human IgG1 observed by optimized negative-staining and individual-particle electron tomography. Sci Rep 3:1089. https://doi.org/10.1038/srep01089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Ren G (2012) High-resolution single-molecule structure revealed by electron microscopy and individual particle electron tomography. J Phys Chem B 2. https://doi.org/10.4172/2161-0398.1000e103

  50. Jay J, Bray B, Qi Y et al (2018) IgG antibody 3D structures and dynamics. Antibodies 7:18. https://doi.org/10.3390/antib7020018

    Article  CAS  PubMed Central  Google Scholar 

  51. Zhang HM, Li C, Lei M et al (2017) Structural and functional characterization of a hole-hole homodimer variant in a “knob-into-hole” bispecific antibody. Anal Chem 89:13494–13501. https://doi.org/10.1021/acs.analchem.7b03830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Ron Krauss, Paul Alivisatos, Haijun Sun, Xiayang Qiu, Lei Zhang, and Mark Garewal, for providing the samples, preparing the EM samples, or preparing the draft. This work was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL115153, 2R01HL115153-06, and R01GM104427,). Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, J. et al. (2019). Optimized Negative-Staining Protocol for Lipid–Protein Interactions Investigated by Electron Microscopy. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9512-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9511-0

  • Online ISBN: 978-1-4939-9512-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics