Skip to main content

Solution NMR Spectroscopy for the Determination of Structures of Membrane Proteins in a Lipid Environment

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2003))

Abstract

NMR spectroscopy has harnessed the recent technical advances to emerge as a competitive, elegant, and eminently viable technique for determining the solution structures of membrane proteins at the level of atomic resolution. Once a good level of cell-based or cell-free expression and purification of a suitably sized membrane protein has been achieved, then NMR offers a combination of several versatile strategies, for example choice of appropriate deuterated or nondeuterated detergents, temperature, and ionic strength; isotope labeling with 2H, 13C, 15N, with or without protonation of Ile (δ1), Leu, and Val methyl protons; combinatorial labeling or unlabeling of specific amino acids; TROSY based-, nonuniform sampling (NUS) based-, and other NMR experiments; measurement of residual dipolar couplings using stretched polyacrylamide gels or DNA nanotubes; spin labeling and paramagnetic relaxation enhancements (PRE). Strategic combinations of these advancements together with availability of highly sensitive cryogenically cooled-probes equipped high-field NMR spectrometers (up to 1 GHz 1H frequency) have allowed the perseverant investigator to successfully overcome several of the conventional pitfalls associated with the NMR technique and membrane proteins, viz., low sensitivity, poor sample stability, spectral crowding, and a limited number of NOEs and other constraints for structure calculations. This has resulted in an unprecedented growth in the number of successfully determined NMR structures of large and complex membrane proteins over the last two decades, and this technique now holds great promise for the structure determination of an ever larger body of membrane proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4):1029–1038. https://doi.org/10.1002/pro.5560070420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim H, Melen K, Osterberg M, von Heijne G (2006) A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci U S A 103(30):11142–11147. https://doi.org/10.1073/pnas.0604075103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Terstappen GC, Reggiani A (2001) In silico research in drug discovery. Trends Pharmacol Sci 22(1):23–26. https://doi.org/10.1016/S0165-6147(00)01584-4

  4. http://blanco.biomol.uci.edu/mpstruc/

  5. Srivastava AP, Luo M, Zhou W, Symersky J, Bai D, Chambers MG, Faraldo-Gomez JD, Liao M, Mueller DM (2018) High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360(6389):eaas9699. https://doi.org/10.1126/science.aas9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nasr ML, Baptista D, Strauss M, Sun ZJ, Grigoriu S, Huser S, Pluckthun A, Hagn F, Walz T, Hogle JM, Wagner G (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14(1):49–52. https://doi.org/10.1038/nmeth.4079

    Article  CAS  PubMed  Google Scholar 

  7. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22(5):623–625. https://doi.org/10.1093/bioinformatics/btk023

    Article  CAS  PubMed  Google Scholar 

  8. Tusnady GE, Dosztanyi Z, Simon I (2004) Transmembrane proteins in the Protein Data Bank: identification and classification. Bioinformatics 20(17):2964–2972. https://doi.org/10.1093/bioinformatics/bth340

    Article  CAS  PubMed  Google Scholar 

  9. Liang B, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci U S A 104(41):16140–16145. https://doi.org/10.1073/pnas.0705466104

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210. https://doi.org/10.1126/science.1161302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476(7358):109–113. https://doi.org/10.1038/nature10257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31(6):896–908. https://doi.org/10.1016/j.molcel.2008.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian C, Sonnichsen FD, Sanders CR (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324(5935):1726–1729. https://doi.org/10.1126/science.1171716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17(6):768–774. https://doi.org/10.1038/nsmb.1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baker KA, Tzitzilonis C, Kwiatkowski W, Choe S, Riek R (2007) Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14(11):1089–1095. https://doi.org/10.1038/nsmb1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reckel S, Gottstein D, Stehle J, Lohr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Guntert P, Dotsch V (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 50(50):11942–11946. https://doi.org/10.1002/anie.201105648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaremko L, Jaremko M, Giller K, Becker S, Zweckstetter M (2014) Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 343(6177):1363–1366. https://doi.org/10.1126/science.1248725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, Chou JJ (2016) Architecture of the mitochondrial calcium uniporter. Nature 533(7602):269–273. https://doi.org/10.1038/nature17656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Williamson JA, Cho SH, Ye J, Collet JF, Beckwith JR, Chou JJ (2015) Structure and multistate function of the transmembrane electron transporter CcdA. Nat Struct Mol Biol 22(10):809–814. https://doi.org/10.1038/nsmb.3099

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Bushweller JH (2018) Solution structure and elevator mechanism of the membrane electron transporter CcdA. Nat Struct Mol Biol 25(2):163–169. https://doi.org/10.1038/s41594-018-0022-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, Sun B, Chou JJ (2013) Unusual architecture of the p7 channel from hepatitis C virus. Nature 498(7455):521–525. https://doi.org/10.1038/nature12283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Böhm R, Wagner G, Hiller S (2017) Solution nuclear magnetic resonance spectroscopy of integral membrane proteins. In: Reference module in life sciences. Elsevier, New York, pp 1–25. https://doi.org/10.1016/b978-0-12-809633-8.08077-8

    Chapter  Google Scholar 

  23. Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P (2018) Perturbations of native membrane protein structure in alkyl phosphocholine detergents: a critical assessment of NMR and biophysical studies. Chem Rev 118(7):3559–3607. https://doi.org/10.1021/acs.chemrev.7b00570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang B, Tamm LK (2016) NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat Struct Mol Biol 23(6):468–474. https://doi.org/10.1038/nsmb.3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH (2017) Application of solution NMR to structural studies on alpha-helical integral membrane proteins. Molecules 22(8):E1347. https://doi.org/10.3390/molecules22081347

    Article  CAS  PubMed  Google Scholar 

  26. Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55(4):335–360. https://doi.org/10.1016/j.pnmrs.2009.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci U S A 102(31):10870–10875. https://doi.org/10.1073/pnas.0504920102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8(4):334–338. https://doi.org/10.1038/86214

    Article  CAS  PubMed  Google Scholar 

  29. Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146. https://doi.org/10.1146/annurev.biochem.73.011303.074004

    Article  CAS  PubMed  Google Scholar 

  30. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39(18):5355–5365. https://doi.org/10.1021/bi000060h

    Article  CAS  PubMed  Google Scholar 

  31. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Prive GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99(21):13560–13565. https://doi.org/10.1073/pnas.212344499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276(5309):131–133. https://doi.org/10.1126/science.276.5309.131

    Article  CAS  PubMed  Google Scholar 

  33. Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11(5):540–547. https://doi.org/10.1016/S0959-440X(00)00246-3

    Article  CAS  PubMed  Google Scholar 

  34. Edrington TC, Kintz E, Goldberg JB, Tamm LK (2011) Structural basis for the interaction of lipopolysaccharide with outer membrane protein H (OprH) from Pseudomonas aeruginosa. J Biol Chem 286(45):39211–39223. https://doi.org/10.1074/jbc.M111.280933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Williams KA, Farrow NA, Deber CM, Kay LE (1996) Structure and dynamics of bacteriophage IKe major coat protein in MPG micelles by solution NMR. Biochemistry 35(16):5145–5157. https://doi.org/10.1021/bi952897w

    Article  CAS  PubMed  Google Scholar 

  36. Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, Choe S (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307(5713):1317–1321. https://doi.org/10.1126/science.1106392

    Article  CAS  PubMed  Google Scholar 

  37. Krueger-Koplin RD, Sorgen PL, Krueger-Koplin ST, Rivera-Torres IO, Cahill SM, Hicks DB, Grinius L, Krulwich TA, Girvin ME (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28(1):43–57. https://doi.org/10.1023/B:JNMR.0000012875.80898.8f

    Article  CAS  PubMed  Google Scholar 

  38. Tieleman DP, van der Spoel D, Berendsen HJC (2000) Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J Phys Chem B 104(27):6380–6388. https://doi.org/10.1021/jp001268f

    Article  CAS  Google Scholar 

  39. Tamm LK, Abildgaard F, Arora A, Blad H, Bushweller JH (2003) Structure, dynamics and function of the outer membrane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR. FEBS Lett 555(1):139–143. https://doi.org/10.1016/S0014-5793(03)01127-X

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez C, Hilty C, Wider G, Wuthrich K (2002) Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy. Proc Natl Acad Sci U S A 99(21):13533–13537. https://doi.org/10.1073/pnas.212515099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernandez C, Adeishvili K, Wuthrich K (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles. Proc Natl Acad Sci U S A 98(5):2358–2363. https://doi.org/10.1073/pnas.051629298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fox DA, Larsson P, Lo RH, Kroncke BM, Kasson PM, Columbus L (2014) Structure of the Neisserial outer membrane protein Opa(6)(0): loop flexibility essential to receptor recognition and bacterial engulfment. J Am Chem Soc 136(28):9938–9946. https://doi.org/10.1021/ja503093y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horst R, Stanczak P, Wuthrich K (2014) NMR polypeptide backbone conformation of the E. coli outer membrane protein W. Structure 22(8):1204–1209. https://doi.org/10.1016/j.str.2014.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Renault M, Saurel O, Czaplicki J, Demange P, Gervais V, Lohr F, Reat V, Piotto M, Milon A (2009) Solution state NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications. J Mol Biol 385(1):117–130. https://doi.org/10.1016/j.jmb.2008.10.021

    Article  CAS  PubMed  Google Scholar 

  45. Marassi FM, Ding Y, Schwieters CD, Tian Y, Yao Y (2015) Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. J Biomol NMR 63(1):59–65. https://doi.org/10.1007/s10858-015-9963-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Porcelli F, Buck B, Lee DK, Hallock KJ, Ramamoorthy A, Veglia G (2004) Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem 279(44):45815–45823. https://doi.org/10.1074/jbc.M405454200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zamoon J, Mascioni A, Thomas DD, Veglia G (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys J 85(4):2589–2598. https://doi.org/10.1016/S0006-3495(03)74681-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gorzelle BM, Nagy JK, Oxenoid K, Lonzer WL, Cafiso DS, Sanders CR (1999) Reconstitutive refolding of diacylglycerol kinase, an integral membrane protein. Biochemistry 38(49):16373–16382. https://doi.org/10.1021/bi991292n

    Article  CAS  PubMed  Google Scholar 

  49. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595. https://doi.org/10.1038/nature06531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127(2):355–368. https://doi.org/10.1016/j.cell.2006.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mowrey DD, Cui T, Jia Y, Ma D, Makhov AM, Zhang P, Tang P, Xu Y (2013) Open-channel structures of the human glycine receptor alpha1 full-length transmembrane domain. Structure 21(10):1897–1904. https://doi.org/10.1016/j.str.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  52. Butterwick JA, MacKinnon R (2010) Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. J Mol Biol 403(4):591–606. https://doi.org/10.1016/j.jmb.2010.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94(23):12366–12371. https://doi.org/10.1073/pnas.94.23.12366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fernandez C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13(5):570–580. https://doi.org/10.1016/j.sbi.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  55. Tugarinov V, Muhandiram R, Ayed A, Kay LE (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase g. J Am Chem Soc 124(34):10025–10035. https://doi.org/10.1021/ja0205636

    Article  CAS  PubMed  Google Scholar 

  56. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223. https://doi.org/10.1007/s10858-009-9333-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36(6):1389–1401. https://doi.org/10.1021/bi9624806

    Article  CAS  PubMed  Google Scholar 

  58. Ikura M, Bax A, Clore GM, Gronenborn AM (1990) Detection of nuclear Overhauser effects between degenerate amide proton resonances by heteronuclear three-dimensional NMR spectroscopy. J Am Chem Soc 112(24):9020–9022. https://doi.org/10.1021/ja00180a080

    Article  CAS  Google Scholar 

  59. Linser R, Gelev V, Hagn F, Arthanari H, Hyberts SG, Wagner G (2014) Selective methyl labeling of eukaryotic membrane proteins using cell-free expression. J Am Chem Soc 136(32):11308–11310. https://doi.org/10.1021/ja504791j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28(9):1351–1361. https://doi.org/10.1038/emboj.2009.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu L, Sun C, Song D, Shen J, Xu N, Gunasekera A, Hajduk PJ, Olejniczak ET (2005) Nuclear magnetic resonance structural studies of a potassium channel-charybdotoxin complex. Biochemistry 44(48):15834–15841. https://doi.org/10.1021/bi051656d

    Article  CAS  PubMed  Google Scholar 

  62. Prestegard JH, al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33(4):371–424

    Article  CAS  Google Scholar 

  63. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12(1):1–16. https://doi.org/10.1110/ps.0233303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Alba E, Tjandra N (2004) Residual dipolar couplings in protein structure determination. Methods Mol Biol 278:89–106. https://doi.org/10.1385/1-59259-809-9:089

    Article  PubMed  Google Scholar 

  65. Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15(5):563–570. https://doi.org/10.1016/j.sbi.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  66. Cierpicki T, Liang B, Tamm LK, Bushweller JH (2006) Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A. J Am Chem Soc 128(21):6947–6951. https://doi.org/10.1021/ja0608343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mascioni A, Eggimann BL, Veglia G (2004) Determination of helical membrane protein topology using residual dipolar couplings and exhaustive search algorithm: application to phospholamban. Chem Phys Lipids 132(1):133–144. https://doi.org/10.1016/j.chemphyslip.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  68. Meier S, Haussinger D, Grzesiek S (2002) Charged acrylamide copolymer gels as media for weak alignment. J Biomol NMR 24(4):351–356

    Article  CAS  Google Scholar 

  69. Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J Am Chem Soc 125(30):9179–9191. https://doi.org/10.1021/ja0350684

    Article  CAS  PubMed  Google Scholar 

  70. Pautsch A, Schulz GE (2000) High-resolution structure of the OmpA membrane domain. J Mol Biol 298(2):273–282. https://doi.org/10.1006/jmbi.2000.3671

    Article  CAS  PubMed  Google Scholar 

  71. Fitzkee NC, Bax A (2010) Facile measurement of (1)H-(1)5N residual dipolar couplings in larger perdeuterated proteins. J Biomol NMR 48(2):65–70. https://doi.org/10.1007/s10858-010-9441-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273(1):283–298. https://doi.org/10.1006/jmbi.1997.1284

    Article  CAS  PubMed  Google Scholar 

  73. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5):905–921. https://doi.org/10.1107/s0907444998003254

    Article  CAS  PubMed  Google Scholar 

  74. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73. https://doi.org/10.1016/S1090-7807(02)00014-9

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez C, Hilty C, Wider G, Guntert P, Wuthrich K (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336(5):1211–1221. https://doi.org/10.1016/j.jmb.2003.09.014

    Article  CAS  PubMed  Google Scholar 

  76. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241. https://doi.org/10.1007/s10858-013-9741-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bermejo GA, Clore GM, Schwieters CD (2012) Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci 21(12):1824–1836. https://doi.org/10.1002/pro.2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tian Y, Schwieters CD, Opella SJ, Marassi FM (2015) A practical implicit membrane potential for NMR structure calculations of membrane proteins. Biophys J 109(3):574–585. https://doi.org/10.1016/j.bpj.2015.06.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122(15):3791–3792. https://doi.org/10.1021/ja0000908

    Article  CAS  Google Scholar 

  80. Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925. https://doi.org/10.1021/ja310901f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zoonens M, Comer J, Masscheleyn S, Pebay-Peyroula E, Chipot C, Miroux B, Dehez F (2013) Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. J Am Chem Soc 135(40):15174–15182. https://doi.org/10.1021/ja407424v

    Article  CAS  PubMed  Google Scholar 

  82. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231. https://doi.org/10.1016/S0076-6879(09)64011-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131(49):17777–17779. https://doi.org/10.1021/ja907918r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu TY, Raschle T, Hiller S, Wagner G (2012) Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim Biophys Acta 1818(6):1562–1569. https://doi.org/10.1016/j.bbamem.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  85. Gluck JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131(34):12060–12061. https://doi.org/10.1021/ja904897p

    Article  CAS  PubMed  Google Scholar 

  86. Shenkarev ZO, Lyukmanova EN, Paramonov AS, Shingarova LN, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132(16):5628–5629. https://doi.org/10.1021/ja9097498

    Article  CAS  PubMed  Google Scholar 

  87. Susac L, Horst R, Wuthrich K (2014) Solution-NMR characterization of outer-membrane protein A from E. coli in lipid bilayer nanodiscs and detergent micelles. Chembiochem 15(7):995–1000. https://doi.org/10.1002/cbic.201300729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hilty C, Wider G, Fernandez C, Wuthrich K (2004) Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents. Chembiochem 5(4):467–473. https://doi.org/10.1002/cbic.200300815

    Article  CAS  PubMed  Google Scholar 

  89. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104(17):4546–4559. https://doi.org/10.1021/ja00381a009

    Article  CAS  Google Scholar 

  90. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104(17):4559–4570. https://doi.org/10.1021/ja00381a010

    Article  CAS  Google Scholar 

  91. Palmer AG III, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238. https://doi.org/10.1016/S0076-6879(01)39315-1

    Article  CAS  PubMed  Google Scholar 

  92. Wang C, Rance M, Palmer AG III (2003) Mapping chemical exchange in proteins with MW > 50 kD. J Am Chem Soc 125(30):8968–8969. https://doi.org/10.1021/ja035139z

    Article  CAS  PubMed  Google Scholar 

  93. Liang B, Arora A, Tamm LK (2010) Fast-time scale dynamics of outer membrane protein A by extended model-free analysis of NMR relaxation data. Biochim Biophys Acta 1798(2):68–76. https://doi.org/10.1016/j.bbamem.2009.07.022

    Article  CAS  PubMed  Google Scholar 

  94. Hwang PM, Bishop RE, Kay LE (2004) The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci U S A 101(26):9618–9623. https://doi.org/10.1073/pnas.0402324101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843. https://doi.org/10.1021/jp101759q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lewis BA, Engelman DM (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166(2):211–217. https://doi.org/10.1016/S0022-2836(83)80007-2

    Article  CAS  PubMed  Google Scholar 

  98. Kucerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88(4):2626–2637. https://doi.org/10.1529/biophysj.104.056606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wolf MG, Hoefling M, Aponte-Santamaria C, Grubmuller H, Groenhof G (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31(11):2169–2174. https://doi.org/10.1002/jcc.21507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This is CSIR-CDRI communication number 9743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Arora, A. (2019). Solution NMR Spectroscopy for the Determination of Structures of Membrane Proteins in a Lipid Environment. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9512-7_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9511-0

  • Online ISBN: 978-1-4939-9512-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics