Skip to main content

EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2003))

Abstract

Electron paramagnetic resonance (EPR) spectroscopy of spin-labeled membrane proteins is a valuable biophysical technique to study structural details and conformational transitions of proteins close to their physiological environment, for example, in liposomes, membrane bilayers, and nanodiscs. Unlike in nuclear magnetic resonance (NMR) spectroscopy, having only one or few specific side chains labeled at a time with paramagnetic probes makes the size of the object under investigation irrelevant in terms of technique sensitivity. As a drawback, extensive site-directed mutagenesis is required in order to analyze the properties of the protein under investigation. EPR can provide detailed information on side chain dynamics of large membrane proteins or protein complexes embedded in membranes with an exquisite sensitivity for flexible regions and on water accessibility profiles across the membrane bilayer. Moreover, distances between the two spin-labeled side chains in membrane proteins can be detected with high precision at cryogenic temperatures. The application of EPR to membrane proteins still presents some challenges in terms of sample preparation, sensitivity and data interpretation, thus it is difficult to give ready-to-go methodological recipes. However, new technological developments (arbitrary waveform generators) and new spin labels spectroscopically orthogonal to nitroxides increased the range of applicability from in vitro toward in-cell EPR experiments. This chapter is an updated version of the one published in the first edition of the book and describes the state of the art in the application of nitroxide-based site-directed spin labeling EPR to membrane proteins, addressing new tools such as arbitrary waveform generators and spectroscopically orthogonal labels, such as Gd(III)-based labels. We will present challenges in sample preparation and data analysis for functional and structural membrane protein studies using site-directed spin labeling techniques and give experimental details on EPR techniques providing information on side chain dynamics and water accessibility using nitroxide probes. An updated optimal Q-band DEER setup for nitroxide probes will be described, and its extension to gadolinium-containing samples will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berliner LJ, Reuben J (eds) (1989) Spin labeling theory and applications, Biological magnetic resonance, vol 8. Plenum Press, New York

    Google Scholar 

  2. Azarkh M, Okle O, Eyring P, Dietrich DR, Drescher M (2011) Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J Magn Reson 212(2):450–454

    CAS  PubMed  Google Scholar 

  3. Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem 50(22):5070–5074

    CAS  Google Scholar 

  4. Wang Y, Paletta JT, Berg K, Reinhart E, Rajca S, Rajca A (2014) Synthesis of unnatural amino acids functionalized with sterically shielded pyrroline nitroxides. Org Lett 16(20):5298–5300

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Paletta JT, Pink M, Foley B, Rajca S, Rajca A (2012) Synthesis and reduction kinetics of sterically shielded pyrrolidine nitroxides. Org Lett 14(20):5322–5325

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Karthikeyan G et al (2018) A bioresistant nitroxide spin label for in-cell EPR spectroscopy: in vitro and in oocytes protein structural dynamics studies. Angew Chem 57(5):1366–1370

    CAS  Google Scholar 

  7. Martorana A, Bellapadrona G, Feintuch A, Di Gregorio E, Aime S, Goldfarb D (2014) Probing protein conformation in cells by EPR distance measurements using Gd3+ spin labeling. J Am Chem Soc 136(38):13458–13465

    CAS  PubMed  Google Scholar 

  8. Theillet F-X et al (2016) Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45

    CAS  PubMed  Google Scholar 

  9. Fleissner MR, Bridges MD, Brooks EK, Cascio D, Kalai T, Hideg K, Hubbell WL (2011) Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proc Natl Acad Sci U S A 108(39):16241–16246

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cooke JA, Brown LJ (2011) Distance measurements by continuous wave EPR spectroscopy to monitor protein folding. Methods Mol Biol 752:73–96

    CAS  PubMed  Google Scholar 

  11. Alessandro B, Giancarlo C, Eliana G, Franco F (2006) How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol Imaging 1(5):184–188

    Google Scholar 

  12. Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA (1996) Watching proteins move using site-directed spin labeling. Structure 4(7):779–783

    CAS  PubMed  Google Scholar 

  13. Bleicken S, Classen M, Padmavathi PV, Ishikawa T, Zeth K, Steinhoff HJ, Bordignon E (2010) Molecular details of Bax activation, oligomerization, and membrane insertion. J Biol Chem 285(9):6636–6647

    CAS  PubMed  Google Scholar 

  14. Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL (1994) A collision gradient-method to determine the immersion depth of nitroxides in lipid bilayers - application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A 91(5):1667–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Altenbach C, Froncisz W, Hemker R, Mchaourab H, Hubbell WL (2005) Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J 89(3):2103–2112

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oh KJ, Altenbach C, Collier RJ, Hubbell WL (2000) Site-directed spin labeling of proteins. Applications to diphtheria toxin. Methods Mol Biol 145:147–169

    CAS  PubMed  Google Scholar 

  17. Subczynski WK, Widomska J, Wisniewska A, Kusumi A (2007) Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains. Methods Mol Biol 398:143–157

    CAS  PubMed  Google Scholar 

  18. Pyka J, Ilnicki J, Altenbach C, Hubbell WL, Froncisz W (2005) Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys J 89(3):2059–2068

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurad D, Jeschke G, Marsh D (2003) Lipid membrane polarity profiles by high-field EPR. Biophys J 85(2):1025–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Plato M, Steinhoff HJ, Wegener C, Törring JT, Savitsky A, Möbius K (2002) Molecular orbital study of polarity and hydrogen bonding effects on the g and hyperfine tensors of site directed NO spin labelled bacteriorhodopsin. Mol Phys 100(23):3711–3721

    CAS  Google Scholar 

  21. Steinhoff HJ, Savitsky A, Wegener C, Pfeiffer M, Plato M, Möbius K (2000) High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim Biophys Acta Bioenerg 1457(3):253–262

    CAS  Google Scholar 

  22. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178(1):42–55

    CAS  PubMed  Google Scholar 

  23. Bordignon E et al (2010) Heterogeneity in the nitroxide micro-environment: polarity and proticity effects in spin-labeled proteins studied by multi-frequency EPR. Appl Magn Reson 37(1):391–403

    Google Scholar 

  24. Volkov A, Dockter C, Bund T, Paulsen H, Jeschke G (2009) Pulsed EPR determination of water accessibility to spin-labeled amino acid residues in LHCIIb. Biophys J 96(3):1124–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaminker I, Barnes R, Han S (2015) Overhauser dynamic nuclear polarization studies on local water dynamics. Methods Enzymol 564:457–483

    PubMed  Google Scholar 

  26. Doll A, Bordignon E, Joseph B, Tschaggelar R, Jeschke G (2012) Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures. J Magn Reson 222:34–43

    CAS  PubMed  Google Scholar 

  27. Segawa TF, Doppelbauer M, Garbuio L, Doll A, Polyhach YO, Jeschke G (2016) Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods. J Chem Phys 144(19):194201

    PubMed  Google Scholar 

  28. Fisette O, Paslack C, Barnes R, Isas JM, Langen R, Heyden M, Han S, Schafer LV (2016) Hydration dynamics of a peripheral membrane protein. J Am Chem Soc 138(36):11526–11535

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barnes R, Sun S, Fichou Y, Dahlquist FW, Heyden M, Han S (2017) Spatially heterogeneous surface water diffusivity around structured protein surfaces at equilibrium. J Am Chem Soc 139(49):17890–17901

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Berliner LJ, Eaton SS, Eaton GR (eds) (2000) Distance measurements in biological systems by EPR, Biological magnetic resonance. Kluwer Academic/Plenum, New York

    Google Scholar 

  31. Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the x-ray structure. Biophys J 73(6):3287–3298

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Altenbach C, Oh KJ, Trabanino RJ, Hideg K, Hubbell WL (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40(51):15471–15482

    CAS  PubMed  Google Scholar 

  33. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191(2):202–218

    CAS  PubMed  Google Scholar 

  34. Grote M, Bordignon E, Polyhach Y, Jeschke G, Steinhoff H-J, Schneider E (2008) A comparative electron paramagnetic resonance study of the nucleotide-binding domains’ catalytic cycle in the assembled maltose ATP-binding cassette importer. Biophys J 95(6):2924–2938

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142(2):331–340

    CAS  PubMed  Google Scholar 

  36. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9(16):1895–1910

    CAS  PubMed  Google Scholar 

  37. Polyhach Y, Bordignon E, Tschaggelar R, Gandra S, Godt A, Jeschke G (2012) High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies. Phys Chem Chem Phys 14(30):10762–10773

    CAS  PubMed  Google Scholar 

  38. Kurshev VV, Raitsimring AM, Tsvetkov YD (1989) Selection of dipolar interaction by the “2 + 1” pulse train ESE. J Magn Reson (1969) 81(3):441–454

    CAS  Google Scholar 

  39. Lueders P, Jeschke G, Yulikov M (2011) Double electron−electron resonance measured between Gd3+ ions and nitroxide radicals. J Phys Chem Lett 2(6):604–609

    CAS  Google Scholar 

  40. Kaminker I, Yagi H, Huber T, Feintuch A, Otting G, Goldfarb D (2012) Spectroscopic selection of distance measurements in a protein dimer with mixed nitroxide and Gd3+ spin labels. Phys Chem Chem Phys 14:4355–4358

    CAS  PubMed  Google Scholar 

  41. Kaminker I, Tkach I, Manukovsky N, Huber T, Yagi H, Otting G, Bennati M, Goldfarb D (2013) W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity. J Magn Reson 227:66–71

    CAS  PubMed  Google Scholar 

  42. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006 - a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30(3–4):473–498

    CAS  Google Scholar 

  43. Polyhach Y, Bordignon E, Jeschke G (2011) Rotamer libraries of spin labelled cysteines for protein studies. Phys Chem Chem Phys 13(6):2356–2366

    CAS  PubMed  Google Scholar 

  44. Jeschke G (2018) MMM: a toolbox for integrative structure modeling. Protein Sci 27(1):76–85

    CAS  PubMed  Google Scholar 

  45. Hagelueken G, Ward R, Naismith JH, Schiemann O (2012) MtsslWizard: in silico spin-labeling and generation of distance distributions in PyMOL. Appl Magn Reson 42(3):377–391

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goddeke H, Timachi MH, Hutter CAJ, Galazzo L, Seeger MA, Karttunen M, Bordignon E, Schafer LV (2018) Atomistic mechanism of large-scale conformational transition in a heterodimeric ABC exporter. J Am Chem Soc 140(13):4543–4551

    PubMed  Google Scholar 

  47. Timachi MH, Hutter CA, Hohl M, Assafa T, Bohm S, Mittal A, Seeger MA, Bordignon E (2017) Exploring conformational equilibria of a heterodimeric ABC transporter. elife 6:e20236

    PubMed  PubMed Central  Google Scholar 

  48. Verhalen B, Dastvan R, Thangapandian S, Peskova Y, Koteiche HA, Nakamoto RK, Tajkhorshid E, McHaourab HS (2017) Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature 543(7647):738–741

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Barth K, Hank S, Spindler PE, Prisner TF, Tampe R, Joseph B (2018) Conformational coupling and trans-inhibition in the human antigen transporter ortholog TmrAB resolved with dipolar EPR spectroscopy. J Am Chem Soc 140(13):4527–4533

    CAS  PubMed  Google Scholar 

  50. Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr Opin Struct Biol 4(4):566–573

    CAS  Google Scholar 

  51. Fleissner MR et al (2009) Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc Natl Acad Sci U S A 106(51):21637–21642

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Toniolo C et al (1995) Synthesis and conformational studies of peptides containing TOAC, a spin-labelled Cα,α-disubstituted glycine. J Pept Sci 1(1):45–57

    CAS  PubMed  Google Scholar 

  53. Jeschke G, Sajid M, Schulte M, Godt A (2009) Three-spin correlations in double electron-electron resonance. Phys Chem Chem Phys 11(31):6580–6591

    CAS  PubMed  Google Scholar 

  54. Spindler PE, Zhang Y, Endeward B, Gershernzon N, Skinner TE, Glaser SJ, Prisner TF (2012) Shaped optimal control pulses for increased excitation bandwidth in EPR. J Magn Reson 218:49–58

    CAS  PubMed  Google Scholar 

  55. Doll A, Pribitzer S, Tschaggelar R, Jeschke G (2013) Adiabatic and fast passage ultra-wideband inversion in pulsed EPR. J Magn Reson 230:27–39

    CAS  PubMed  Google Scholar 

  56. Teucher M, Bordignon E (2018) Improved signal fidelity in 4-pulse DEER with Gaussian pulses. J Magn Reson 296:103–111

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge M. Hadi Timachi for the preparation of Fig. 7 and for the ODNP setup in the lab, and M. Teucher for the Fig. 6 and the Gaussian DEER setup in the lab. E.B. would like to thank G. Jeschke for his continuous support and for the Q-band homemade resonators, and the DFG for the Q-band spectrometer funding (INST 130/972-1 FUGG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Bordignon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bordignon, E., Kucher, S., Polyhach, Y. (2019). EPR Techniques to Probe Insertion and Conformation of Spin-Labeled Proteins in Lipid Bilayers. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9512-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9511-0

  • Online ISBN: 978-1-4939-9512-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics