Skip to main content

UV Resonance Raman Spectroscopy as a Tool to Probe Membrane Protein Structure and Dynamics

  • Protocol
  • First Online:
Lipid-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2003))

Abstract

Ultraviolet resonance Raman (UVRR) spectroscopy is a vibrational technique that reveals structures and dynamics of biological macromolecules without the use of extrinsic labels. By tuning the Raman excitation wavelength to the deep UV region (e.g., 228 nm), Raman signal from tryptophan and tyrosine residues are selectively enhanced, allowing for the study of these functionally relevant amino acids in lipid and aqueous environments. In this chapter, we present methods on the UVRR data acquisition and analysis of the tryptophan vibrational modes of a model β-barrel membrane protein, OmpA, in folded and unfolded conformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Pena I, Leigh BS, Schlamadinger DE, Kim JE (2015) Insights into protein structure and dynamics by ultraviolet and visible resonance Raman spectroscopy. Biochemistry 54(31):4770–4783

    Article  CAS  Google Scholar 

  2. Leigh BS, Schlamadinger DE, Kim JE (2014) Structures and dynamics of proteins probed by UV resonance Raman spectroscopy. In: Biophysical methods for biotherapeutics: discovery and development applications. Wiley, New York, pp 243–268. https://doi.org/10.1002/9781118354698

    Chapter  Google Scholar 

  3. Merlin JC (1985) Resonance Raman-spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl Chem 57(5):785–792

    Article  CAS  Google Scholar 

  4. Johnson BB, Peticolas WL (1976) Resonant Raman effect. Annu Rev Phys Chem 27:465–491

    Article  CAS  Google Scholar 

  5. Sanchez KM, Kang GP, Wu BJ, Kim JE (2011) Tryptophan-lipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy. Biophys J 100(9):2121–2130

    Article  CAS  Google Scholar 

  6. de Jesus AJ, Allen TW (2013) The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. Biochim Biophys Acta 1828(2):864–876

    Article  Google Scholar 

  7. Schlamadinger DE, Gable JE, Kim JE (2009) Hydrogen bonding and solvent polarity markers in the UV resonance Raman spectrum of tryptophan: application to membrane proteins. J Phys Chem B 113(44):14769–14778

    Article  CAS  Google Scholar 

  8. Sanchez KM, Neary TJ, Kim JE (2008) Ultraviolet resonance Raman spectroscopy of folded and unfolded states of an integral membrane protein. J Phys Chem B 112(31):9507–9511

    Article  CAS  Google Scholar 

  9. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A 96(17):9459–9464

    Article  CAS  Google Scholar 

  10. Millefiori S, Alparone A, Milleflori A, Vanella A (2008) Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids. Biophys Chem 132(2–3):139–147

    Article  CAS  Google Scholar 

  11. Miura T, Takeuchi H, Harada I (1989) Tryptophan Raman bands sensitive to hydrogen-bonding and side-chain conformation. J Raman Spectrosc 20(10):667–671

    Article  CAS  Google Scholar 

  12. Juszczak LJ, Desamero RZ (2009) Extension of the tryptophan chi2,1 dihedral angle-W3 band frequency relationship to a full rotation: correlations and caveats. Biochemistry 48(12):2777–2787

    Article  CAS  Google Scholar 

  13. Asher SA (1988) UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. Annu Rev Phys Chem 39:537–588

    Article  CAS  Google Scholar 

  14. Harada I, Takeuchi H (1986) Raman and ultraviolet resonance Raman spectra of proteins and related compounds. In: Spectroscopy of biological systems. Wiley, New York, pp 113–175

    Google Scholar 

  15. Austin JC, Jordan T, Spiro TG (1993) Ultraviolet resonance Raman studies of proteins and related model compounds. In: Biomolecular spectroscopy, part A. Wiley, New York, pp 55–127

    Google Scholar 

  16. Miura T, Takeuchi H, Harada I (1987) Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Am Chem Soc 27:88–94

    Google Scholar 

  17. Shafaat HS, Sanchez KM, Neary TJ, Kim JE (2009) Ultraviolet resonance Raman spectroscopy of a beta-sheet peptide: a model for membrane protein folding. J Raman Spectrosc 40(8):1060–1064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.K.A. acknowledges the UCSD Molecular Biophysics Training NIH Grant T32 GM008326 for funding support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy E. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Asamoto, D.K., Kim, J.E. (2019). UV Resonance Raman Spectroscopy as a Tool to Probe Membrane Protein Structure and Dynamics. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 2003. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9512-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9512-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9511-0

  • Online ISBN: 978-1-4939-9512-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics