Skip to main content

Design of Cyclic Peptides as Protein Recognition Motifs

  • Protocol
  • First Online:
Cyclic Peptide Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2001))

Abstract

Protein–protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Linear peptide drugs, however, can be applied therapeutically as protein recognition motifs only to a limited extent because of their poor permeability, decreased receptor selectivity, and proteolytic stability. A major strategy in peptide chemistry is directed toward chemical modification and macrocyclization in order to limit a peptide’s conformational possibilities, to increase its chemical and enzymatic stability, to prolong the time of action, and to increase activity and selectivity toward the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin L, Wang W, Fang G (2014) Targeting protein–protein interaction by small molecules. Annu Rev Pharmacol Toxicol 54:435–456

    Article  CAS  Google Scholar 

  2. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  CAS  Google Scholar 

  3. Mammen M, Shakhnovich EI, Whitesides GM (1998) Using a convenient, quantitative model for torsional entropy to establish qualitative trends for molecular processes that restrict conformational freedom. J Org Chem 63:3168–3175

    Article  CAS  Google Scholar 

  4. Zorzi A, Deyle K, Heinis C (2017) Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol 38:24–29

    Article  CAS  Google Scholar 

  5. White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3:509–524

    Article  CAS  Google Scholar 

  6. Marshall GR, Bosshard HE (1972) Angiotensin II. Studies on the biologically active conformation. Circ Res 31:143–150

    Google Scholar 

  7. Garcia-Echeverria C, Chene P, Blommers MJ, Furet P (2000) Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 43:3205–3208

    Article  CAS  Google Scholar 

  8. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305(5689):1466–1470

    Article  CAS  Google Scholar 

  9. Calvo JC, Choconta KC, Diaz D, Orozco O, Bravo MM, Espejo F, Salazar LM, Guzman F, Patarroyo ME (2003) An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients’ sera. J Med Chem 46:5389–5394

    Article  CAS  Google Scholar 

  10. Kemp DS, Boyd JG, Muendel CC (1991) The helical s constant for alanine in water derived from template-nucleated helices. Nature 352:451–454

    Article  CAS  Google Scholar 

  11. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To KH, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK (2013) Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 110:E3445–E3454

    Article  CAS  Google Scholar 

  12. Madala PK, Tyndall JD, Nall T, Fairlie DP (2010) Update 1 of: proteases universally recognize beta strands in their active sites. Chem Rev 110:PR1–P31

    Article  CAS  Google Scholar 

  13. Loughlin WA, Tyndall JD, Glenn MP, Hill TA, Fairlie DP (2010) Update 1 of: beta-strand mimetics. Chem Rev 110:PR32–PR69

    Article  CAS  Google Scholar 

  14. McCauley JA, McIntyre CJ, Rudd MT, Nguyen KT, Romano JJ, Butcher JW, Gilbert KF, Bush KJ, Holloway MK, Swestock J, Wan BL, Carroll SS, DiMuzio JM, Graham DJ, Ludmerer SW, Mao SS, Stahlhut MW, Fandozzi CM, Trainor N, Olsen DB, Vacca JP, Liverton NJ (2010) Discovery of vaniprevir (MK-7009), a macrocyclic hepatitis C virus NS3/4a protease inhibitor. J Med Chem 53:2443–2463

    Article  CAS  Google Scholar 

  15. Jiang Y, Andrews SW, Condroski KR, Buckman B, Serebryany V, Wenglowsky S, Kennedy AL, Madduru MR, Wang B, Lyon M, Doherty GA, Woodard BT, Lemieux C, Geck Do M, Zhang H, Ballard J, Vigers G, Brandhuber BJ, Stengel P, Josey JA, Beigelman L, Blatt L, Seiwert SD (2014) Discovery of danoprevir (ITMN-191/R7227), a highly selective and potent inhibitor of hepatitis C virus (HCV) NS3/4A protease. J Med Chem 57:1753–1769

    Article  CAS  Google Scholar 

  16. Ruiz-Gomez G, Tyndall JD, Pfeiffer B, Abbenante G, Fairlie DP (2010) Update 1 of: over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem Rev 110:PR1–P41

    Article  Google Scholar 

  17. Che Y, Marshall GR (2008) Privileged scaffolds targeting reverse-turn and helix recognition. Expert Opin Ther Targets 12:101–114

    Article  CAS  Google Scholar 

  18. Chalmers DK, Marshall GR (1995) Pro-D-NMe-amino acid and D-Pro-NMe-amino acid: simple, efficient reverse-turn constraints. J Am Chem Soc 117:5927–5937

    Article  CAS  Google Scholar 

  19. Chung YJ, Huck BR, Christianson LA, Stanger HE, Krauthäuser S, Powell DR, Gellman SH (2000) Stereochemical control of hairpin formation in β-peptides containing dinipecotic acid reverse turn segments. J Am Chem Soc 122:3995–4004

    Article  CAS  Google Scholar 

  20. Finch AM, Wong AK, Paczkowski NJ, Wadi SK, Craik DJ, Fairlie DP, Taylor SM (1999) Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J Med Chem 42:1965–1974

    Article  CAS  Google Scholar 

  21. Liu H, Kim HR, Deepak R, Wang L, Chung KY, Fan H, Wei Z, Zhang C (2018) Orthosteric and allosteric action of the C5a receptor antagonists. Nat Struct Mol Biol 25:472–481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Prof. Garland R. Marshall for his mentorship at Washington University on peptide chemistry and to many Pfizer colleagues, e.g., Thomas Maggie, Peter Jones, Matthew Hayward, and Adam Gilbert, for their insights and fruitful discussions on the design of cyclic peptides for human diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Che .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Che, Y. (2019). Design of Cyclic Peptides as Protein Recognition Motifs. In: Goetz, G. (eds) Cyclic Peptide Design. Methods in Molecular Biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9504-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9503-5

  • Online ISBN: 978-1-4939-9504-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics