Skip to main content

Design of Oxytocin Analogs

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2001))

Abstract

The neurohypophyseal hormone oxytocin (OT) and related modulators of the oxytocin receptor (OTR) have been the subject of intensive research for nearly seven decades. Despite having rather poor drug-like properties, OT is used as a treatment for labor induction, postpartum hemorrhage, and lactation support. The potential use of OT in the treatment of central nervous system (CNS)-related diseases has recently renewed interest in the pharmacology of OT. Oxytocin is one of the most extensively studied cyclic peptides and since the elucidation of its structure in 1953 thousands of peptidic OT analogs with antagonistic and agonistic properties have been synthesized and biologically evaluated. Among them are atosiban, a mixed oxytocin receptor (OTR)/vasopressin 1a receptor (V1aR) antagonist used as a tocolytic agent approved (in certain countries), and carbetocin, a longer acting OTR agonist on the market for the treatment of postpartum hemorrhage. Many other OT analogs with improved pharmacological properties (e.g., barusiban, Antag III) have been identified. These peptides have been tested in clinical trials and/or used as pharmacological tools. In this chapter, the modifications of the OT molecule that led to the discovery of these compounds are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683

    Article  CAS  PubMed  Google Scholar 

  2. Zingg HH, Laporte SA (2003) The oxytocin receptor. Trends Endocrinol Metab 14(5):222–227

    Article  CAS  PubMed  Google Scholar 

  3. Kimura T, Saji F, Nishimori K et al (2003) Molecular regulation of the oxytocin receptor in peripheral organs. J Mol Endocrinol 30(2):109–115

    Article  CAS  PubMed  Google Scholar 

  4. Baribeau DA, Anagnostou E (2015) Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social neurocircuits. Front Neurosci 9:335. https://doi.org/10.3389/fnins.2015.00335

    Article  PubMed  PubMed Central  Google Scholar 

  5. Veening JG, de Jong T, Barendregt HP (2010) Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol Behav 101(2):193–210. https://doi.org/10.1016/j.physbeh.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  6. Ohlsson B, Truedsson M, Djerf P et al (2006) Oxytocin is expressed throughout the human gastrointestinal tract. Regul Pept 135(1–2):7–11. https://doi.org/10.1016/j.regpep.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  7. Gutkowska J, Jankowski M, Lambert C et al (1997) Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart. Proc Natl Acad Sci U S A 94(21):11704–11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colaianni G, Sun L, Zaidi M et al (2014) Oxytocin and bone. Am J Physiol Regul Integr Comp Physiol 307(8):R970–R977. https://doi.org/10.1152/ajpregu.00040.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shyken JM, Petrie RH (1995) Oxytocin to induce labor. Clin Obstet Gynecol 38(2):232–245

    Article  CAS  PubMed  Google Scholar 

  10. Lawson EA (2017) The effects of oxytocin on eating behaviour and metabolism in humans. Nat Rev Endocrinol 13(12):700–709. https://doi.org/10.1038/nrendo.2017.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spetter MS, Hallschmid M (2017) Current findings on the role of oxytocin in the regulation of food intake. Physiol Behav 176:31–39. https://doi.org/10.1016/j.physbeh.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  12. Leng G, Sabatier N (2017) Oxytocin—the sweet hormone? Trends Endocrinol Metab 28(5):365–376. https://doi.org/10.1016/j.tem.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  13. Sun L, Tamma R, Yuen T et al (2016) Functions of vasopressin and oxytocin in bone mass regulation. Proc Natl Acad Sci U S A 113(1):164–169. https://doi.org/10.1073/pnas.1523762113

    Article  CAS  PubMed  Google Scholar 

  14. Yuen T, Sun L, Liu P et al (2016) Beyond reproduction: pituitary hormone actions on bone. Prog Mol Biol Transl Sci 143:175–185. https://doi.org/10.1016/bs.pmbts.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  15. Amri EZ, Pisani DF (2016) Control of bone and fat mass by oxytocin. Horm Mol Biol Clin Investig 28(2):95–104. https://doi.org/10.1515/hmbci-2016-0045

    Article  CAS  PubMed  Google Scholar 

  16. Blevins JE, Baskin DG (2015) Translational and therapeutic potential of oxytocin as an anti-obesity strategy: insights from rodents, nonhuman primates and humans. Physiol Behav 152(Pt B):438–449. https://doi.org/10.1016/j.physbeh.2015.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blevins JE, Graham JL, Morton GJ et al (2015) Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am J Physiol Regul Integr Comp Physiol 308(5):R431–R438. https://doi.org/10.1152/ajpregu.00441.2014

    Article  CAS  PubMed  Google Scholar 

  18. Gutkowska J, Jankowski M (2012) Oxytocin revisited: its role in cardiovascular regulation. J Neuroendocrinol 24(4):599–608. https://doi.org/10.1111/j.1365-2826.2011.02235.x

    Article  CAS  PubMed  Google Scholar 

  19. Jankowski M, Broderick TL, Gutkowska J (2016) Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr Disord 16(1):34. https://doi.org/10.1186/s12902-016-0110-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Motta-Mena NV, Puts DA (2017) Endocrinology of human female sexuality, mating, and reproductive behavior. Horm Behav 91:19–35. https://doi.org/10.1016/j.yhbeh.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  21. Zik JB, Roberts DL (2015) The many faces of oxytocin: implications for psychiatry. Psychiatry Res 226(1):31–37. https://doi.org/10.1016/j.psychres.2014.11.048

    Article  CAS  PubMed  Google Scholar 

  22. Veening JG, de Jong TR, Waldinger MD et al (2015) The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 753:209–228. https://doi.org/10.1016/j.ejphar.2014.07.045

    Article  CAS  PubMed  Google Scholar 

  23. Stoop R (2014) Neuromodulation by oxytocin and vasopressin in the central nervous system as a basis for their rapid behavioral effects. Curr Opin Neurobiol 29:187–193. https://doi.org/10.1016/j.conb.2014.09.012

    Article  CAS  PubMed  Google Scholar 

  24. Neumann ID, Slattery DA (2015) Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 79(3):213–221. https://doi.org/10.1016/j.biopsych.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  25. Xin Q, Bai B, Liu W (2017) The analgesic effects of oxytocin in the peripheral and central nervous system. Neurochem Int 103:57–64. https://doi.org/10.1016/j.neuint.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  26. Boll S, Almeida de Minas AC, Raftogianni A et al (2017) Oxytocin and pain perception: from animal models to human research. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.09.041

    Article  CAS  PubMed  Google Scholar 

  27. Wei SQ, Luo ZC, Qi HP et al (2010) High-dose vs. low-dose oxytocin for labor augmentation: a systematic review. Am J Obstet Gynecol 203(4):296–304. https://doi.org/10.1016/j.ajog.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  28. Page K, McCool WF, Guidera M (2017) Examination of the pharmacology of oxytocin and clinical guidelines for use in labor. J Midwifery Women’s Health 62(4):425–433. https://doi.org/10.1111/jmwh.12610

    Article  Google Scholar 

  29. Wing DA, Sheibani L (2015) Pharmacotherapy options for labor induction. Expert Opin Pharmacother 16(11):1657–1668. https://doi.org/10.1517/14656566.2015.1060960

    Article  CAS  PubMed  Google Scholar 

  30. Sentilhes L, Merlot B, Madar H et al (2016) Postpartum haemorrhage: prevention and treatment. Expert Rev Hematol 9(11):1043–1061. https://doi.org/10.1080/17474086.2016.1245135

    Article  CAS  PubMed  Google Scholar 

  31. Ruis H, Rolland R, Doesburg W et al (1981) Oxytocin enhances onset of lactation among mothers delivering prematurely. Br Med J (Clin Res Ed) 283(6287):340–342

    Article  CAS  Google Scholar 

  32. Fewtrell MS, Loh KL, Blake A et al (2006) Randomised, double blind trial of oxytocin nasal spray in mothers expressing breast milk for preterm infants. Arch Dis Child Fetal Neonatal Ed 91(3):F169–F174. https://doi.org/10.1136/adc.2005.081265

    Article  CAS  PubMed  Google Scholar 

  33. Kosfeld M, Heinrichs M, Zak PJ et al (2005) Oxytocin increases trust in humans. Nature 435(7042):673–676. https://doi.org/10.1038/nature03701

    Article  CAS  PubMed  Google Scholar 

  34. Feifel D (2011) Is oxytocin a promising treatment for schizophrenia? Expert Rev Neurother 11(2):157–159. https://doi.org/10.1586/ern.10.199

    Article  CAS  PubMed  Google Scholar 

  35. Guastella AJ, Hickie IB (2016) Oxytocin treatment, circuitry, and autism: a critical review of the literature placing oxytocin into the autism context. Biol Psychiatry 79(3):234–242. https://doi.org/10.1016/j.biopsych.2015.06.028

    Article  CAS  PubMed  Google Scholar 

  36. Lee MR, Rohn MC, Tanda G et al (2016) Targeting the oxytocin system to treat addictive disorders: rationale and progress to date. CNS Drugs 30(2):109–123. https://doi.org/10.1007/s40263-016-0313-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zanos P, Georgiou P, Weber C et al (2017) Oxytocin and opioid addiction revisited: old drug, new applications. Br J Pharmacol. https://doi.org/10.1111/bph.13757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Bowen MT, Neumann ID (2017) Rebalancing the addicted brain: oxytocin interference with the neural substrates of addiction. Trends Neurosci 40(12):691–708. https://doi.org/10.1016/j.tins.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  39. Tracy LM, Georgiou-Karistianis N, Gibson SJ et al (2015) Oxytocin and the modulation of pain experience: implications for chronic pain management. Neurosci Biobehav Rev 55:53–67. https://doi.org/10.1016/j.neubiorev.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  40. Goodin BR, Ness TJ, Robbins MT (2015) Oxytocin—a multifunctional analgesic for chronic deep tissue pain. Curr Pharm Des 21(7):906–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frijling JL, van Zuiden M, Koch SB et al (2014) Efficacy of oxytocin administration early after psychotrauma in preventing the development of PTSD: study protocol of a randomized controlled trial. BMC Psychiatry 14:92. https://doi.org/10.1186/1471-244X-14-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shilling PD, Feifel D (2016) Potential of oxytocin in the treatment of schizophrenia. CNS Drugs 30(3):193–208. https://doi.org/10.1007/s40263-016-0315-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feifel D, Shilling PD, MacDonald K (2016) A review of oxytocin's effects on the positive, negative, and cognitive domains of schizophrenia. Biol Psychiatry 79(3):222–233. https://doi.org/10.1016/j.biopsych.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  44. Einfeld SL, Smith E, McGregor IS et al (2014) A double-blind randomized controlled trial of oxytocin nasal spray in Prader-Willi syndrome. Am J Med Genet A 164A(9):2232–2239. https://doi.org/10.1002/ajmg.a.36653

    Article  CAS  PubMed  Google Scholar 

  45. Kim S, Soeken TA, Cromer SJ et al (2014) Oxytocin and postpartum depression: delivering on what's known and what's not. Brain Res 1580:219–232. https://doi.org/10.1016/j.brainres.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  46. Brummelte S, Galea LA (2016) Postpartum depression: etiology, treatment and consequences for maternal care. Horm Behav 77:153–166. https://doi.org/10.1016/j.yhbeh.2015.08.008

    Article  PubMed  Google Scholar 

  47. Tampi RR, Maksimowski M, Ahmed M et al (2017) Oxytocin for frontotemporal dementia: a systematic review. Ther Adv Psychopharmacol 7(1):48–53. https://doi.org/10.1177/2045125316672574

    Article  CAS  PubMed  Google Scholar 

  48. Horta de Macedo LR, Zuardi AW, Machado-de-Sousa JP et al (2014) Oxytocin does not improve performance of patients with schizophrenia and healthy volunteers in a facial emotion matching task. Psychiatry Res 220(1–2):125–128. https://doi.org/10.1016/j.psychres.2014.07.082

    Article  CAS  PubMed  Google Scholar 

  49. Guastella AJ, Gray KM, Rinehart NJ et al (2014) The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J Child Psychol Psychiatry 56(4):444–452. https://doi.org/10.1111/jcpp.12305

    Article  PubMed  Google Scholar 

  50. du Vigneaud V, Ressler C, Trippett S (1953) The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J Biol Chem 205(2):949–957

    CAS  Google Scholar 

  51. du Vigneaud V, Ressler C, Swan JM et al (1953) The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc 75:4879–4880

    Article  Google Scholar 

  52. Gimpl G, Reitz J, Brauer S et al (2008) Oxytocin receptors: ligand binding, signalling and cholesterol dependence. Prog Brain Res 170:193–204. https://doi.org/10.1016/S0079-6123(08)00417-2

    Article  CAS  PubMed  Google Scholar 

  53. Hawtin SR, Howard HC, Wheatley M (2001) Identification of an extracellular segment of the oxytocin receptor providing agonist-specific binding epitopes. Biochem J 354(Pt 2):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Polacek I, Krejci I, Nesvadba H et al (1970) Action of (1,6-di-alanine)-oxytocin and (1,6-di-serine)-oxytocin on the rat uterus and mammary gland in vitro. Eur J Pharmacol 9(2):239–245. https://doi.org/10.1016/0014-2999(70)90306-7

    Article  CAS  PubMed  Google Scholar 

  55. Manning M, Przybylski JP, Olma A et al (1987) No requirements of cyclic conformation of antagonists in binding to vasopressin receptors. Nature 329(6142):839–840. https://doi.org/10.1038/329839a0

    Article  CAS  PubMed  Google Scholar 

  56. Manning M, Stoev S, Kolodziejczyk A et al (1990) Design of potent and selective linear antagonists of vasopressor (V1-receptor) responses to vasopressin. J Med Chem 33(11):3079–3086

    Article  CAS  PubMed  Google Scholar 

  57. Chini B, Mouillac B, Ala Y et al (1995) Molecular basis for agonist selectivity in the vasopressin/oxytocin receptor family. Adv Exp Med Biol 395:321–328

    CAS  PubMed  Google Scholar 

  58. Akerlund M, Bossmar T, Brouard R et al (1999) Receptor binding of oxytocin and vasopressin antagonists and inhibitory effects on isolated myometrium from preterm and term pregnant women. Br J Obstet Gynaecol 106(10):1047–1053

    Article  PubMed  Google Scholar 

  59. Wisniewski K, Alagarsamy S, Galyean R et al (2014) New, potent, and selective peptidic oxytocin receptor agonists. J Med Chem 57(12):5306–5317. https://doi.org/10.1021/jm500365s

    Article  CAS  PubMed  Google Scholar 

  60. Abdul-Karim R, Assali NS (1961) Renal function in human pregnancy. V. Effects of oxytocin on renal hemodynamics and water and electrolyte excretion. J Lab Clin Med 57:522–532

    CAS  PubMed  Google Scholar 

  61. Ruchala PL, Metheny N, Essenpreis H et al (2002) Current practice in oxytocin dilution and fluid administration for induction of labor. J Obstet Gynecol Neonatal Nurs 31(5):545–550. https://doi.org/10.1111/j.1552-6909.2002.tb00079.x

    Article  PubMed  Google Scholar 

  62. Seifer DB, Sandberg EC, Ueland K et al (1985) Water intoxication and hyponatremic encephalopathy from the use of an oxytocin nasal spray. A case report. J Reprod Med 30(3):225–228

    CAS  PubMed  Google Scholar 

  63. Ansseau M, Legros JJ, Mormont C et al (1987) Intranasal oxytocin in obsessive-compulsive disorder. Psychoneuroendocrinology 12(3):231–236

    Article  CAS  PubMed  Google Scholar 

  64. Mayer-Hubner B (1996) Pseudotumour cerebri from intranasal oxytocin and excessive fluid intake. Lancet 347(9001):623. https://doi.org/10.1016/S0140-6736(96)91325-2

    Article  CAS  Google Scholar 

  65. Hicks C, Ramos L, Reekie T et al (2014) Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: a biotelemetry study in rats. Br J Pharmacol 171(11):2868–2887. https://doi.org/10.1111/bph.12613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leake RD, Weitzman RE, Fisher DA (1980) Pharmacokinetics of oxytocin in the human subject. Obstet Gynecol 56(6):701–704

    CAS  PubMed  Google Scholar 

  67. Landgraf R (1985) Plasma oxytocin concentrations in man after different routes of administration of synthetic oxytocin. Exp Clin Endocrinol 85(2):245–248. https://doi.org/10.1055/s-0029-1210444

    Article  CAS  PubMed  Google Scholar 

  68. Thornton S, Davison JM, Baylis PH (1990) Effect of human pregnancy on metabolic clearance rate of oxytocin. Am J Phys 259(1. Pt 2):R21–R24

    CAS  Google Scholar 

  69. Lundin S, Broeders A, Ohlin M et al (1993) Pharmacokinetic and pharmacologic properties of antiuterotonic oxytocin analogs in the rat. J Pharmacol Exp Ther 264(2):783–788

    CAS  PubMed  Google Scholar 

  70. Tsujimoto M, Mizutani S, Adachi H et al (1992) Identification of human placental leucine aminopeptidase as oxytocinase. Arch Biochem Biophys 292(2):388–392. https://doi.org/10.1016/0003-9861(92)90007-J

    Article  CAS  PubMed  Google Scholar 

  71. Yamahara N, Nomura S, Suzuki T et al (2000) Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy. Life Sci 66(15):1401–1410. https://doi.org/10.1016/S0024-3205(00)00451-3

    Article  CAS  PubMed  Google Scholar 

  72. Gossen A, Hahn A, Westphal L et al (2012) Oxytocin plasma concentrations after single intranasal oxytocin administration—a study in healthy men. Neuropeptides 46(5):211–215. https://doi.org/10.1016/j.npep.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  73. Shen WC (2003) Oral peptide and protein delivery: unfulfilled promises? Drug Discov Today 8(14):607–608

    Article  PubMed  Google Scholar 

  74. Renukuntla J, Vadlapudi AD, Patel A et al (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447(1–2):75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferrie JJ, Gruskos JJ, Goldwaser AL et al (2013) A comparative protease stability study of synthetic macrocyclic peptides that mimic two endocrine hormones. Bioorg Med Chem Lett 23(4):989–995. https://doi.org/10.1016/j.bmcl.2012.12.041

    Article  CAS  PubMed  Google Scholar 

  76. Wang J, Yadav V, Smart AL et al (2015) Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm 12(3):966–973. https://doi.org/10.1021/mp500809f

    Article  CAS  PubMed  Google Scholar 

  77. Fjellestad-Paulsen A, Soderberg-Ahlm C, Lundin S (1995) Metabolism of vasopressin, oxytocin, and their analogues in the human gastrointestinal tract. Peptides 16(6):1141–1147

    Article  CAS  PubMed  Google Scholar 

  78. Ghezzi P (2013) Protein glutathionylation in health and disease. Biochim Biophys Acta 1830(5):3165–3172. https://doi.org/10.1016/j.bbagen.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  79. Mens WB, Witter A, van Wimersma Greidanus TB (1983) Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res 262(1):143–149. https://doi.org/10.1016/0006-8993(83)90478-X

    Article  CAS  PubMed  Google Scholar 

  80. Leng G, Ludwig M (2016) Intranasal oxytocin: myths and delusions. Biol Psychiatry 79(3):243–250. https://doi.org/10.1016/j.biopsych.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  81. Striepens N, Kendrick KM, Hanking V et al (2013) Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci Rep 3:3440. https://doi.org/10.1038/srep03440

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chang SW, Barter JW, Ebitz RB et al (2012) Inhaled oxytocin amplifies both vicarious reinforcement and self-reinforcement in rhesus macaques (Macaca mulatta). Proc Natl Acad Sci U S A 109(3):959–964. https://doi.org/10.1073/pnas.1114621109

    Article  PubMed  PubMed Central  Google Scholar 

  83. Modi ME, Connor-Stroud F, Landgraf R et al (2014) Aerosolized oxytocin increases cerebrospinal fluid oxytocin in rhesus macaques. Psychoneuroendocrinology 45:49–57. https://doi.org/10.1016/j.psyneuen.2014.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gard JW, Alexander JM, Bawdon RE et al (2002) Oxytocin preparation stability in several common obstetric intravenous solutions. Am J Obstet Gynecol 186(3):496–498

    Article  CAS  PubMed  Google Scholar 

  85. Kumar V, Madabushi R, Derendorf H et al (2006) Development and validation of an HPLC method for oxytocin in Ringer's Lactate and its application in stability analysis. J Liq Chromatogr Relat Technol 29(16):2353–2365

    Article  CAS  Google Scholar 

  86. Trissel LA, Zhang Y, Douglass K et al (2006) Extended stability of oxytocin in common infusion solutions. Int J Pharm Compd 10(2):156–158

    CAS  PubMed  Google Scholar 

  87. Kaushal G, Sayre BE, Prettyman T (2012) Stability-indicating HPLC method for the determination of the stability of oxytocin parenteral solutions prepared in polyolefin bags. Drug Discov Ther 6(1):49–54

    CAS  PubMed  Google Scholar 

  88. Avanti C, Amorij JP, Setyaningsih D et al (2011) A new strategy to stabilize oxytocin in aqueous solutions: I. The effects of divalent metal ions and citrate buffer. AAPS J 13(2):284–290. https://doi.org/10.1208/s12248-011-9268-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Avanti C, Permentier HP, Dam A et al (2012) A new strategy to stabilize oxytocin in aqueous solutions: II. Suppression of cysteine-mediated intermolecular reactions by a combination of divalent metal ions and citrate. Mol Pharm 9(3):554–562. https://doi.org/10.1021/mp200622z

    Article  CAS  PubMed  Google Scholar 

  90. Hawe A, Poole R, Romeijn S et al (2009) Towards heat-stable oxytocin formulations: analysis of degradation kinetics and identification of degradation products. Pharm Res 26(7):1679–1688. https://doi.org/10.1007/s11095-009-9878-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wisniewski K, Finnman J, Flipo M et al (2013) On the mechanism of degradation of oxytocin and its analogues in aqueous solution. Biopolymers 100(4):408–421. https://doi.org/10.1002/bip.22260

    Article  CAS  PubMed  Google Scholar 

  92. Manning M, Stoev S, Chini B et al (2008) Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res 170:473–512. https://doi.org/10.1016/S0079-6123(08)00437-8

    Article  CAS  PubMed  Google Scholar 

  93. Chini B, Manning M, Guillon G (2008) Affinity and efficacy of selective agonists and antagonists for vasopressin and oxytocin receptors: an “easy guide” to receptor pharmacology. Prog Brain Res 170:513–517. https://doi.org/10.1016/S0079-6123(08)00438-X

    Article  CAS  PubMed  Google Scholar 

  94. Kimura T, Tanizawa O, Mori K et al (1992) Structure and expression of a human oxytocin receptor. Nature 356(6369):526–529. https://doi.org/10.1038/356526a0

    Article  CAS  PubMed  Google Scholar 

  95. Kimura T, Azuma C, Takemura M et al (1993) Molecular cloning of a human oxytocin receptor. Regul Pept 45(1–2):73–77

    Article  CAS  PubMed  Google Scholar 

  96. Thibonnier M, Auzan C, Madhun Z et al (1994) Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J Biol Chem 269(5):3304–3310

    CAS  PubMed  Google Scholar 

  97. Sugimoto T, Saito M, Mochizuki S et al (1994) Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J Biol Chem 269(43):27088–27092

    CAS  PubMed  Google Scholar 

  98. Birnbaumer M, Antaramian A, Themmen AP et al (1992) Desensitization of the human V2 vasopressin receptor. Homologous effects in the absence of heterologous desensitization. J Biol Chem 267(17):11783–11788

    CAS  PubMed  Google Scholar 

  99. Lolait SJ, O'Carroll AM, McBride OW et al (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357(6376):336–339. https://doi.org/10.1038/357336a0

    Article  CAS  PubMed  Google Scholar 

  100. Freidinger RM, Pettibone DJ (1997) Small molecule ligands for oxytocin and vasopressin receptors. Med Res Rev 17(1):1–16. https://doi.org/10.1002/(SICI)1098-1128(199701)17:1<1::AID-MED1>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  101. Borthwick AD (2010) Oral oxytocin antagonists. J Med Chem 53(18):6525–6538. https://doi.org/10.1021/jm901812z

    Article  CAS  PubMed  Google Scholar 

  102. Pitt GR, Batt AR, Haigh RM et al (2004) Non-peptide oxytocin agonists. Bioorg Med Chem Lett 14(17):4585–4589. https://doi.org/10.1016/j.bmcl.2004.04.107

    Article  CAS  PubMed  Google Scholar 

  103. Ring RH, Schechter LE, Leonard SK et al (2010) Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist. Neuropharmacology 58(1):69–77. https://doi.org/10.1016/j.neuropharm.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  104. Blanks AM, Thornton S (2003) The role of oxytocin in parturition. BJOG 110 Suppl 20:46–51

    Article  PubMed  Google Scholar 

  105. Laudanski T, Pierzynski P (2003) Oxytocin and fetal membranes in preterm labor: current concepts and clinical implication. Gynecol Endocrinol 17(3):261–267

    Article  CAS  PubMed  Google Scholar 

  106. Zeeman GG, Khan-Dawood FS, Dawood MY (1997) Oxytocin and its receptor in pregnancy and parturition: current concepts and clinical implications. Obstet Gynecol 89(5. Pt 2):873–883

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi K, Diamond F, Bieniarz J et al (1980) Uterine contractility and oxytocin sensitivity in preterm, term, and postterm pregnancy. Am J Obstet Gynecol 136(6):774–779. https://doi.org/10.1016/0002-9378(80)90455-X

    Article  CAS  PubMed  Google Scholar 

  108. Kimura T, Takemura M, Nomura S et al (1996) Expression of oxytocin receptor in human pregnant myometrium. Endocrinology 137(2):780–785. https://doi.org/10.1210/endo.137.2.8593830

    Article  CAS  PubMed  Google Scholar 

  109. Schwarz MK, Page P (2003) Preterm labour: an overview of current and emerging therapeutics. Curr Med Chem 10(15):1441–1468

    Article  CAS  PubMed  Google Scholar 

  110. Robinson JN, Regan JA, Norwitz ER (2001) The epidemiology of preterm labor. Semin Perinatol 25(4):204–214

    Article  CAS  PubMed  Google Scholar 

  111. Sawyer WH, Grzonka Z, Manning M (1981) Neurohypophysial peptides. Design of tissue-specific agonists and antagonists. Mol Cell Endocrinol 22(2):117–134. https://doi.org/10.1016/0303-7207(81)90086-1

    Article  CAS  PubMed  Google Scholar 

  112. Lebl M (1987) Analogs with inhibitory properties. In: Jost K, Lebl M, Brtnik F (eds) CRC Handbook of neurohypophyseal hormone analogs, vol 2, pt 1. CRC Press, Boca Raton, pp 17–74

    Google Scholar 

  113. Hruby VJ, Smith CW (1987) Structure-activity relationships of neurohypophyseal peptides. Peptides (N Y) 8:77–207

    Article  CAS  Google Scholar 

  114. Manning M, Sawyer WH (1989) Discovery, development, and some uses of vasopressin and oxytocin antagonists. J Lab Clin Med 114(6):617–632

    CAS  PubMed  Google Scholar 

  115. Manning M, Sawyer WH (1993) Design, synthesis and some uses of receptor-specific agonists and antagonists of vasopressin and oxytocin. J Recept Res 13(1–4):195–214

    Article  CAS  PubMed  Google Scholar 

  116. Manning M, Cheng LL, Klis WA et al (1995) Advances in the design of selective antagonists, potential tocolytics, and radioiodinated ligands for oxytocin receptors. Adv Exp Med Biol 395:559–583

    CAS  PubMed  Google Scholar 

  117. Vrachnis N, Malamas FM, Sifakis S et al (2011) The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. Int J Endocrinol 2011:350546. https://doi.org/10.1155/2011/350546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Manning M, Misicka A, Olma A et al (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24(4):609–628. https://doi.org/10.1111/j.1365-2826.2012.02303.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Law HD, du Vigneaud V (1960) Synthesis of 2-(p-methoxyphenyl)alanine oxytocin (O-methyloxytocin) and some observations on its pharmacological behavior. J Am Chem Soc 82:4579–4581. https://doi.org/10.1021/ja01502a034

    Article  CAS  Google Scholar 

  120. Schulz H, Du Vigneaud V (1966) Synthesis of 1-L-penicillamine-oxytocin, 1-D-penicillamine-oxytocin, and 1-deaminopenicillamine-oxytocin, potent inhibitors of the oxytocic response of oxytocin. J Med Chem 9(5):647–650

    Article  CAS  PubMed  Google Scholar 

  121. Vavrek RJ, Ferger MF, Allen GA et al (1972) Synthesis of three oxytocin analogs related to (1-deaminopenicillamine)oxytocin possessing antioxytocic activity. J Med Chem 15(2):123–126

    Article  CAS  PubMed  Google Scholar 

  122. Nestor JJ Jr, Ferger MF, du Vigneaud V (1975) [1-Beta-mercapto-beta,beta-pentamethylenepropionic acid]oxytocin, a potent inhibitor of oxytocin. J Med Chem 18(3):284–287

    Article  CAS  PubMed  Google Scholar 

  123. Lowbridge J, Manning M, Seto J et al (1979) Synthetic antagonists of in vivo responses by the rat uterus to oxytocin. J Med Chem 22(5):565–569

    Article  CAS  PubMed  Google Scholar 

  124. Sawyer WH, Haldar J, Gazis D et al (1980) The design of effective in vivo antagonists of rat uterus and milk ejection responses to oxytocin. Endocrinology 106(1):81–91. https://doi.org/10.1210/endo-106-1-81

    Article  CAS  PubMed  Google Scholar 

  125. Bankowski K, Manning M, Seto J et al (1980) Design and synthesis of potent in vivo antagonists of oxytocin. Int J Pept Protein Res 16(5):382–391

    Article  CAS  PubMed  Google Scholar 

  126. Kaurov OA, Martynov VF, Mikhailov YD et al (1972) Synthesis of new oxytocin analogs modified in position 2. Zh Obshch Khim 42(7):1654

    CAS  Google Scholar 

  127. Kaurov OA, Mikhailov YD, Smirnova MP (1978) Structure-uterotonic activity relationship for oxytocin analogs modified in position 2. Bioorg Khim 4(5):619–627

    CAS  Google Scholar 

  128. Lebl M, Barth T, Servitova L et al (1982) Analogs of neurohypophysial hormones containing a D-amino acid in position 2. In: Peptides, Proceedings of the 17th European Peptide Symposium. de Gruyter, Berlin, pp 457–460

    Chapter  Google Scholar 

  129. Lebl M, Barth T, Servitova L et al (1985) Amino acids and peptides. CXC. Oxytocin analogs with inhibitory properties, containing in position 2 a hydrophobic amino acid of D-configuration. Collect Czechoslov Chem Commun 50(1):132–145. https://doi.org/10.1135/cccc19850132

    Article  CAS  Google Scholar 

  130. Chan WY, Rockway TW, Hruby VJ (1987) Long-acting oxytocin antagonists: effects of 2-D-stereoisomer substitution on antagonistic potency and duration of action. Proc Soc Exp Biol Med 185(2):187–192

    Article  CAS  PubMed  Google Scholar 

  131. Flouret G, Brieher W, Mahan K et al (1991) Design of potent oxytocin antagonists featuring D-tryptophan at position 2. J Med Chem 34(2):642–646

    Article  CAS  PubMed  Google Scholar 

  132. Flouret G, Majewski T, Balaspiri L et al (2002) Antagonists of oxytocin featuring replacement with modified beta-mercaptopropionic acids at position 1. J Pept Sci 8(7):314–326. https://doi.org/10.1002/psc.390

    Article  CAS  PubMed  Google Scholar 

  133. Ahn TG, Han SJ, Cho YS et al (2004) In vivo activity of the potent oxytocin antagonist on uterine activity in the rat. In Vivo 18(6):763–766

    CAS  PubMed  Google Scholar 

  134. Fejgin MD, Pak SC, Flouret G et al (1998) Comparison of the in vivo activity of different oxytocin antagonists in the pregnant baboon. J Soc Gynecol Investig 5(5):251–254. https://doi.org/10.1016/S1071-5576(98)00021-5

    Article  CAS  PubMed  Google Scholar 

  135. Song CH, So GY, Pak SC et al (2002) Comparison of oxytocin and oxytocin antagonist metabolism in the plasma of pregnant humans and baboons. Gynecol Obstet Investig 54(1):21–25. https://doi.org/10.1159/000064692

    Article  CAS  Google Scholar 

  136. Flouret G, Chaloin O, Slaninova J (2003) Analogues of a potent oxytocin antagonist with truncated C-terminus or shorter amino acid side chain of the basic amino acid at position 8. J Pept Sci 9(6):393–401. https://doi.org/10.1002/psc.471

    Article  CAS  PubMed  Google Scholar 

  137. Flouret G, Chaloin O, Borovickova L et al (2006) Analogues of oxytocin antagonists bearing a ureido group in the amino acid side chain at position 4 or 5. J Pept Sci 12(5):347–353. https://doi.org/10.1002/psc.733

    Article  CAS  PubMed  Google Scholar 

  138. Lebl M, Barth T, Servitova L et al (1984) Amino acids and peptides. CLXXXVI. Synthesis and properties of carba-6 analogs of oxytocin containing a deaminopenicillamine residue in position 1. Collect Czechoslov Chem Commun 49(9):2012–2023. https://doi.org/10.1135/cccc19842012

    Article  CAS  Google Scholar 

  139. Prochazka Z, Slaninova J, Barth T et al (1992) Amino acids and peptides. CCXXIX. Analogs of deamino carba oxytocin with inhibitory properties; synthesis and biological activities. Collect Czechoslov Chem Commun 57(6):1335–1344. https://doi.org/10.1135/cccc19921335

    Article  CAS  Google Scholar 

  140. Manning M, Cheng LL, Stoev S et al (2005) Design of peptide oxytocin antagonists with strikingly higher affinities and selectivities for the human oxytocin receptor than atosiban. J Pept Sci 11(10):593–608. https://doi.org/10.1002/psc.667

    Article  CAS  PubMed  Google Scholar 

  141. Manning M, Kruszynski M, Bankowski K et al (1989) Solid-phase synthesis of 16 potent (selective and nonselective) in vivo antagonists of oxytocin. J Med Chem 32(2):382–391

    Article  CAS  PubMed  Google Scholar 

  142. Magafa V, Borovickova L, Slaninova J et al (2010) Synthesis and biological activity of oxytocin analogues containing unnatural amino acids in position 9: structure activity study. Amino Acids 38(5):1549–1559. https://doi.org/10.1007/s00726-009-0372-2

    Article  CAS  PubMed  Google Scholar 

  143. Breton C, Chellil H, Kabbaj-Benmansour M et al (2001) Direct identification of human oxytocin receptor-binding domains using a photoactivatable cyclic peptide antagonist: comparison with the human V1a vasopressin receptor. J Biol Chem 276(29):26931–26941. https://doi.org/10.1074/jbc.M102073200

    Article  CAS  PubMed  Google Scholar 

  144. Elands J, Barberis C, Jard S et al (1988) 125I-labelled d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH2(9)]OVT: a selective oxytocin receptor ligand. Eur J Pharmacol 147(2):197–207. https://doi.org/10.1016/0014-2999(88)90778-9

    Article  CAS  PubMed  Google Scholar 

  145. Carnazzi E, Aumelas A, Mouillac B et al (2001) Design, synthesis and pharmacological characterization of a potent radioiodinated and photoactivatable peptidic oxytocin antagonist. J Med Chem 44(18):3022–3030

    Article  CAS  PubMed  Google Scholar 

  146. Melin P, Vilhardt H, Lindeberg G et al (1981) Inhibitory effect of O-alkylated analogues of oxytocin and vasopressin on human and rat myometrial activity. J Endocrinol 88(2):173–180

    Article  CAS  PubMed  Google Scholar 

  147. Akerlund M, Kostrzewska A, Laudanski T et al (1983) Vasopressin effects on isolated non-pregnant myometrium and uterine arteries and their inhibition by deamino-ethyl-lysine-vasopressin and deamino-ethyl-oxytocin. Br J Obstet Gynaecol 90(8):732–738

    Article  CAS  PubMed  Google Scholar 

  148. Akerlund M, Stromberg P, Forsling ML et al (1983) Inhibition of vasopressin effects on the uterus by a synthetic analogue. Obstet Gynecol 62(3):309–312

    Article  CAS  PubMed  Google Scholar 

  149. Melin P, Trojnar J, Vilhardt H et al (1983) Uterotonic oxytocin and vasopressin antagonists with minimal structure modifications. In: Hruby VJ, Rich DH (eds) Peptides. Structure and function. Proceedings of the Eight American Peptide Symposium, Tuscon, AZ, USA. Pierce Chem. Co., pp 361–364

    Google Scholar 

  150. Melin P, Trojnar J, Johansson B et al (1986) Synthetic antagonists of the myometrial response to vasopressin and oxytocin. J Endocrinol 111 (1):125–131

    Article  CAS  Google Scholar 

  151. Romero R, Sibai BM, Sanchez-Ramos L et al (2000) An oxytocin receptor antagonist (atosiban) in the treatment of preterm labor: a randomized, double-blind, placebo-controlled trial with tocolytic rescue. Am J Obstet Gynecol 182(5):1173–1183. https://doi.org/10.1067/mob.2000.95834

    Article  CAS  PubMed  Google Scholar 

  152. Valenzuela GJ, Sanchez-Ramos L, Romero R et al (2000) Maintenance treatment of preterm labor with the oxytocin antagonist atosiban. The Atosiban PTL-098 Study Group. Am J Obstet Gynecol 182(5):1184–1190. https://doi.org/10.1067/mob.2000.105816

    Article  CAS  PubMed  Google Scholar 

  153. Tsatsaris V, Carbonne B, Cabrol D (2004) Atosiban for preterm labour. Drugs 64(4):375–382

    Article  CAS  PubMed  Google Scholar 

  154. Husslein P, Quartarolo JP (2003) Review of clinical experience with atosiban and the Tractocile Efficacy Assessment Survey in Europe (TREASURE) study protocol. Int J Clin Pract 57(2):121–127

    CAS  PubMed  Google Scholar 

  155. Manning M, Miteva K, Pancheva S et al (1995) Design and synthesis of highly selective in vitro and in vivo uterine receptor antagonists of oxytocin: comparisons with Atosiban. Int J Pept Protein Res 46(3–4):244–252

    CAS  PubMed  Google Scholar 

  156. Chan WY, Wo NC, Manning M (1996) The role of oxytocin receptors and vasopressin V1a receptors in uterine contractions in rats: implications for tocolytic therapy with oxytocin antagonists. Am J Obstet Gynecol 175(5):1331–1335. https://doi.org/10.1016/S0002-9378(96)70050-9

    Article  CAS  PubMed  Google Scholar 

  157. Steinwall M, Bossmar T, Brouard R et al (2005) The effect of relcovaptan (SR 49059), an orally active vasopressin V1a receptor antagonist, on uterine contractions in preterm labor. Gynecol Endocrinol 20(2):104–109. https://doi.org/10.1080/09513590400021144

    Article  CAS  PubMed  Google Scholar 

  158. Stoev S, Cheng LL, Manning M et al (2001) Design of tocolytic oxytocin antagonists which are more selective than Atosiban in rat bioassays and in human receptor assays. In: Lebl M, Houghten RA (eds) Peptides: The wave of the future, Proceedings of the Seventeenth American Peptide Symposium, San Diego, CA, USA. American Peptide Society, pp 699–700

    Google Scholar 

  159. Manning M, Stoev S, Cheng LL et al (2001) Design of oxytocin antagonists, which are more selective than atosiban. J Pept Sci 7(9):449–465. https://doi.org/10.1002/psc.339

    Article  CAS  PubMed  Google Scholar 

  160. Stymiest JL, Mitchell BF, Wong S et al (2003) Synthesis of biologically active dicarba analogues of the peptide hormone oxytocin using ring-closing metathesis. Org Lett 5(1):47–49. https://doi.org/10.1021/ol027160v

    Article  CAS  PubMed  Google Scholar 

  161. Stymiest JL, Mitchell BF, Wong S et al (2005) Synthesis of oxytocin analogues with replacement of sulfur by carbon gives potent antagonists with increased stability. J Org Chem 70(20):7799–7809. https://doi.org/10.1021/jo050539l

    Article  CAS  PubMed  Google Scholar 

  162. Gimpl G, Postina R, Fahrenholz F et al (2005) Binding domains of the oxytocin receptor for the selective oxytocin receptor antagonist barusiban in comparison to the agonists oxytocin and carbetocin. Eur J Pharmacol 510(1–2):9–16. https://doi.org/10.1016/j.ejphar.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  163. Wesley VJ, Hawtin SR, Howard HC et al (2002) Agonist-specific, high-affinity binding epitopes are contributed by an arginine in the N-terminus of the human oxytocin receptor. Biochemistry 41(16):5086–5092. https://doi.org/10.1021/bi015990v

    Article  CAS  PubMed  Google Scholar 

  164. Aurell C-J, Melin P, Nilsson A et al (1995) Preparation of peptides exhibiting oxytocin antagonistic activity. WO9502609A1

    Google Scholar 

  165. Nilsson A, Aurell C-J, Ekholm K et al (1996) Synthesis of an oxytocin antagonist—Ferring F 792. In: Ramage R, Epton R (eds) Peptides 1996, Proceedings of the 24th European Peptide Symposium, Edinburgh, Scotland. Mayflower Scientific, pp 683–684

    Google Scholar 

  166. Wisniewski K, Trojnar J, Riviere P et al (1999) The synthesis of a new class of oxytocin antagonists. Bioorg Med Chem Lett 9(19):2801–2804. https://doi.org/10.1016/s0960-894x(99)00478-3

    Article  CAS  PubMed  Google Scholar 

  167. Wisniewski K, Trojnar J, Haigh R et al (1999) In search for a new class of oxytocin antagonists. In: Bajusz S, Hudecz F (eds) Peptides 1998, Proceedings of the 25th European peptide symposium, Budapest. Akademiai Kiado, pp 518–519

    Google Scholar 

  168. Melin P, Nilsson A, Trojnar J et al (1998) Preparation of heptapeptide alcohol oxytocin analogs. WO9823636A1

    Google Scholar 

  169. Pierzynski P, Lemancewicz A, Reinheimer T et al (2004) Inhibitory effect of barusiban and atosiban on oxytocin-induced contractions of myometrium from preterm and term pregnant women. J Soc Gynecol Investig 11(6):384–387. https://doi.org/10.1016/j.jsgi.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  170. Nilsson L, Reinheimer T, Steinwall M et al (2003) FE 200 440: a selective oxytocin antagonist on the term-pregnant human uterus. BJOG 110(11):1025–1028

    Article  CAS  PubMed  Google Scholar 

  171. Reinheimer TM, Bee WH, Resendez JC et al (2005) Barusiban, a new highly potent and long-acting oxytocin antagonist: pharmacokinetic and pharmacodynamic comparison with atosiban in a cynomolgus monkey model of preterm labor. J Clin Endocrinol Metab 90(4):2275–2281. https://doi.org/10.1210/jc.2004-2120

    Article  CAS  PubMed  Google Scholar 

  172. Thornton S, Goodwin TM, Greisen G et al (2009) The effect of barusiban, a selective oxytocin antagonist, in threatened preterm labor at late gestational age: a randomized, double-blind, placebo-controlled trial. Am J Obstet Gynecol 200(6):627 e621–627 e610. https://doi.org/10.1016/j.ajog.2009.01.015

    Article  CAS  Google Scholar 

  173. Guttmann S, Boissonnas RA (1963) Synthesis of Ser4-oxytocin, Ala4-oxytocin, Ser5-oxytocin, and Ala5-oxytocin. Helv Chim Acta 46(5):1626–1636

    Article  CAS  Google Scholar 

  174. du Vigneaud V, Denning GS Jr, Drabarek S et al (1964) The synthesis and pharmacological study of 4-decarboxamido-oxytocin (4-alpha-aminobutyric acid-oxytocin) and 5-decarboxamido-oxytocin (5-alanine-oxytocin). J Biol Chem 239:472–478

    CAS  Google Scholar 

  175. Chan WY, Wo NC, Cheng LL et al (1996) Isosteric substitution of Asn5 in antagonists of oxytocin and vasopressin leads to highly selective and potent oxytocin and V1a receptor antagonists: new approaches for the design of potential tocolytics for preterm labor. J Pharmacol Exp Ther 277(2):999–1003

    CAS  PubMed  Google Scholar 

  176. Cheng LL, Olma A, Klis WA et al (1996) Position 5 modifications of vasopressin and oxytocin antagonists enhance OT receptor selectivity. In: PTP K, Hodges RS (eds) Peptides: Chemistry, structure and biology, Proceedings of the 14th American Peptide Symposium, Columbus, OH, USA. Mayflower Scientific, pp 380–381

    Google Scholar 

  177. Manning M, Cheng LL, Stoev S et al (1995) An exploration of the effects of L- and D-tetrahydroisoquinoline-3-carboxylic acid substitutions at positions 2, 3 and 7 in cyclic and linear antagonists of vasopressin and oxytocin and at position 3 in arginine vasopressin. J Pept Sci 1(1):66–79. https://doi.org/10.1002/psc.310010109

    Article  CAS  PubMed  Google Scholar 

  178. Flouret G, Majewski T, Brieher W et al (1993) Systematic substitution of an oxytocin antagonist with D-amino acids: unexpected high antagonistic potency of the D-Cys6-substituted analogue. J Med Chem 36(6):747–749

    Article  CAS  PubMed  Google Scholar 

  179. Belec L, Maletinska L, Slaninova J et al (2001) The influence of steric interactions on the conformation and biology of oxytocin. Synthesis and analysis of penicillamine(6)-oxytocin and penicillamine(6)-5-tert-butylproline(7)-oxytocin analogs. J Pept Res 58(3):263–273

    Article  CAS  PubMed  Google Scholar 

  180. Belec L, Slaninova J, Lubell WD (2000) A study of the relationship between biological activity and prolyl amide isomer geometry in oxytocin using 5-tert-butylproline to augment the Cys(6)-Pro(7) amide cis-isomer population. J Med Chem 43(8):1448–1455. https://doi.org/jm990090m

    Google Scholar 

  181. Larive CK, Guerra L, Rabenstein DL (1992) Cis/trans conformational equilibrium across the cysteine6-proline peptide bond of oxytocin, arginine vasopressin, and lysine vasopressin. J Am Chem Soc 114(19):7331–7337

    Article  CAS  Google Scholar 

  182. Wittelsberger A, Patiny L, Slaninova J et al (2005) Introduction of a cis-prolyl mimic in position 7 of the peptide hormone oxytocin does not result in antagonistic activity. J Med Chem 48(21):6553–6562. https://doi.org/10.1021/jm049205z

    Article  CAS  PubMed  Google Scholar 

  183. Fragiadaki M, Magafa V, Borovickova L et al (2007) Synthesis and biological activity of oxytocin analogues containing conformationally-restricted residues in position 7. Eur J Med Chem 42(6):799–806. https://doi.org/10.1016/j.ejmech.2006.12.016

    Article  CAS  PubMed  Google Scholar 

  184. Hill PS, Smith DD, Slaninova J et al (1990) Bicyclization of a weak oxytocin agonist produces a highly potent oxytocin antagonist. J Am Chem Soc 112(8):3110–3113. https://doi.org/10.1021/ja00164a035

    Article  CAS  Google Scholar 

  185. Smith DD, Slaninova J, Hruby VJ (1992) Structure-activity studies of a novel bicyclic oxytocin antagonist. J Med Chem 35(9):1558–1563

    Article  CAS  PubMed  Google Scholar 

  186. Liao S, Shenderovich MD, Zhang Z et al (1998) Substitution of the side-chain-constrained amino acids β-methyl-2',6'-dimethyl-4'-methoxytyrosine in position 2 of a bicyclic oxytocin analogue provides unique insights into the bioactive topography of oxytocin antagonists. J Am Chem Soc 120(29):7393–7394. https://doi.org/10.1021/ja980848b

    Article  CAS  Google Scholar 

  187. Manning M, Cheng LL, Klis WA et al (1995) Effects of a D-Cys6/L-Cys6 interchange in nonselective and selective vasopressin and oxytocin antagonists. J Med Chem 38(10):1762–1769

    Article  CAS  PubMed  Google Scholar 

  188. Lebl M (1987) Analogs with dissociated and/or high activities. In: Jost K, Lebl M, Brtnik F (eds) CRC Handbook of neurohypophyseal hormone analogs, vol 2., pt 1. CRC Press, Boca Raton, pp 75–154

    Google Scholar 

  189. Chini B, Fanelli F (2000) Molecular basis of ligand binding and receptor activation in the oxytocin and vasopressin receptor family. Exp Physiol 85(Spec No):59S–66S

    Article  CAS  PubMed  Google Scholar 

  190. du Vigneaud V, Winestock G, Murti VVS et al (1960) Synthesis of 1-beta -mercaptopropionic acid oxytocin (deamino-oxytocin), a highly potent analog of oxytocin. J Biol Chem 235:PC 64–PC 66

    Google Scholar 

  191. Hope DB, Murti VV, Du Vigneaud V (1962) A highly potent analogue of oxytocin, desamino-oxytocin. J Biol Chem 237:1563–1566

    CAS  PubMed  Google Scholar 

  192. Ferrier BM, Jarvis D, Du Vigneaud V (1965) Deamino-oxytocin. Its isolation by partition chromatography on Sephadex and crystallization from water, and its biological activities. J Biol Chem 240(11):4264–4266

    CAS  PubMed  Google Scholar 

  193. Walti M, Hope DB (1972) Synthesis of (1-(L-2-hydroxy-3-mercaptopropanoic acid))oxytocin, a highly potent analogue of oxytocin. J Chem Soc Perkin 1:1946–1950

    Article  Google Scholar 

  194. Hope DB (1974) Pharmacology of hydroxy-analogues of oxytocin. Proc R Soc Med 67(1):40–42

    CAS  PubMed  Google Scholar 

  195. Manning M, Lowbridge J, Sawyer WH et al (1976) Synthesis and some pharmacological properties of [1-(L-2-hydroxy-3-mercaptopropanoic acid), 4-threonine]oxytocin (hydroxy [4-Thr]oxytocin), a peptide with strikingly high oxytocic potency and of [1-(L-2-hydroxy-3-mercaptopropanoic acid)]oxytocin (hydroxy-oxytocin). J Med Chem 19(3):376–380

    Article  CAS  PubMed  Google Scholar 

  196. Manning M, Coy E, Sawyer WH (1970) Solid-phase synthesis of (4-threonine)-oxytocin. A more potent and specific oxytocic agent than oxytocin. Biochemistry 9(20):3925–3930

    Article  CAS  PubMed  Google Scholar 

  197. Manning M, Sawyer WH (1970) 4-Threonine-oxytocin: a more active and specific oxytocic agent than oxytocin. Nature 227(5259):715–716

    Article  CAS  PubMed  Google Scholar 

  198. Barth T, Slaninova J, Lebl M et al (1987) Effect of threonine in position 4 in oxytocin and vasotocin analogs on the time course of uterotonic response. Endocrinol Exp 21(3):191–197

    CAS  PubMed  Google Scholar 

  199. Hruby VJ, Upson DA, Yamamoto DM et al (1979) Active site studies of neurohypophyseal hormones. Comparison of oxytocin and arginine vasopressin analogs containing 2-D-tyrosine. J Am Chem Soc 101(10):2717. https://doi.org/10.1021/ja00504a037

    Article  CAS  Google Scholar 

  200. Bodanszky M, du Vigneaud V (1959) Synthesis of a biologically active analog of oxytocin, with phenylalanine replacing tyrosine. J Am Chem Soc 81:1258–1259

    Article  CAS  Google Scholar 

  201. Konzett H, Berde B (1959) The biological activity of a new analog of oxytocin in which the tyrosyl group is replaced by phenylalanyl. Br J Pharmacol Chemother 14:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhuze AL, Jost K, Kasafirek E et al (1964) Amino acids and peptides. XLV. Analogs of oxytocin with O-ethyltyrosine, p-methylphenylalanine, and p-ethylphenylalanine replacing tyrosine. Collect Czechoslov Chem Commun 29(11):2648. https://doi.org/10.1135/cccc19642648

    Article  CAS  Google Scholar 

  203. Pliska V, Marbach P, Vasak J et al (1977) [2-o-Iodotyrosine]-oxytocin and [2-o-methyltyrosine]-oxytocin: basic pharmacology and comments on their potential use in binding studies. Experientia 33(3):367–369

    Article  CAS  PubMed  Google Scholar 

  204. Barth T (1977) Chymotryptic cleavage of deamino analogs of oxytocin. Collect Czechoslov Chem Commun 42(1):195–200. https://doi.org/10.1135/cccc19770195

    Article  CAS  Google Scholar 

  205. Vilhardt H, Atke A, Barthova J et al (1997) Interaction of chymotrypsin with carbetocin ([1-deamino-1-monocarba-2-O-methyltyrosine]-oxytocin). Pharmacol Toxicol 81(3):147–150

    Article  CAS  PubMed  Google Scholar 

  206. Jost K, Barth T, Krejci I et al (1973) Amino acids and peptides. CXIII. Carba1-oxytocin: synthesis and some of its biological properties. Collect Czechoslov Chem Commun 38(4):1073–1083. https://doi.org/10.1135/cccc19731073

    Article  Google Scholar 

  207. Keller O, Rudinger J (1974) Synthesis of (1,6-alpha,alpha'-diaminosuberic acid)oxytocin ('dicarba-oxytocin'). Helv Chim Acta 57(5):1253–1259. https://doi.org/10.1002/hlca.19740570502

    Article  CAS  PubMed  Google Scholar 

  208. Muttenthaler M, Andersson A, de Araujo AD et al (2010) Modulating oxytocin activity and plasma stability by disulfide bond engineering. J Med Chem 53(24):8585–8596. https://doi.org/10.1021/jm100989w

    Article  CAS  PubMed  Google Scholar 

  209. Pliska V, Jutz G, Beck S (1985) Molecular sites of oxytocin inactivation in the rat uterus: in vitro investigation with enzyme probes using oil-immersion technique. In: Deber CM, Hruby VJ, Kopple KD (eds) Peptides: structure and function. Proceedings of the ninth American Peptide Symposium, Toronto, Canada. Pierce Chemical Company, pp 603–606

    Google Scholar 

  210. Rudinger J, Jost K (1964) A biologically active analogue of oxytocin not containing a disulfide group. Experientia 20(10):570–571

    Article  CAS  PubMed  Google Scholar 

  211. Barth T, Krejci I, Kupkova B et al (1973) Pharmacology of cyclic analogues of deamino-oxytocin not containing a disulphide bond (carba analogues). Eur J Pharmacol 24(2):183–188

    Article  CAS  PubMed  Google Scholar 

  212. Barth T, Krejci I, Vaneckova J et al (1974) Prolonged action of deamino-carba analogues of oxytocin on the rat uterus in vivo. Eur J Pharmacol 25(1):67–70

    Article  CAS  PubMed  Google Scholar 

  213. Fric I, Kodicek M, Prochaszka Z et al (1974) Amino acids and peptides. CXXI. Synthesis and circular dichroism of some deamino-1-carbaoxytocin analogs with modifications of the amino acid residue at position 2. Collect Czechoslov Chem Commun 39(5):1290–1302. https://doi.org/10.1135/cccc19741290

    Article  CAS  Google Scholar 

  214. Engstrom T, Barth T, Melin P et al (1998) Oxytocin receptor binding and uterotonic activity of carbetocin and its metabolites following enzymatic degradation. Eur J Pharmacol 355(2–3):203–210

    Article  CAS  PubMed  Google Scholar 

  215. Barth T, Slaninova J, Lebl M et al (1980) Biological activities and protracted action of carba-analogs of deamino-oxytocin with O-methyltyrosine in position 2. Collect Czechoslov Chem Commun 45(11):3045–3050. https://doi.org/10.1135/cccc19803045

    Article  CAS  Google Scholar 

  216. Hunter DJ, Schulz P, Wassenaar W (1992) Effect of carbetocin, a long-acting oxytocin analog on the postpartum uterus. Clin Pharmacol Ther 52(1):60–67

    Article  CAS  PubMed  Google Scholar 

  217. Peters NC, Duvekot JJ (2009) Carbetocin for the prevention of postpartum hemorrhage: a systematic review. Obstet Gynecol Surv 64(2):129–135. https://doi.org/10.1097/OGX.0b013e3181932e5b

    Article  PubMed  Google Scholar 

  218. Rath W (2009) Prevention of postpartum haemorrhage with the oxytocin analogue carbetocin. Eur J Obstet Gynecol Reprod Biol 147(1):15–20. https://doi.org/10.1016/j.ejogrb.2009.06.018

    Article  CAS  PubMed  Google Scholar 

  219. Attilakos G, Psaroudakis D, Ash J et al (2010) Carbetocin versus oxytocin for the prevention of postpartum haemorrhage following caesarean section: the results of a double-blind randomised trial. BJOG 117(8):929–936. https://doi.org/10.1111/j.1471-0528.2010.02585.x

    Article  CAS  PubMed  Google Scholar 

  220. Meshykhi LS, Nel MR, Lucas DN (2016) The role of carbetocin in the prevention and management of postpartum haemorrhage. Int J Obstet Anesth 28:61–69. https://doi.org/10.1016/j.ijoa.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  221. Danglas P, Reidy M, Korner P et al (2016) Method of treating Prader-Willi syndrome using oxytocin receptor agonists. WO2016044131

    Google Scholar 

  222. Leonard AK, Sestak JO, Costantino HR et al (2012) Intranasal carbetocin formulations and methods for the treatment of autism. US20120172304

    Google Scholar 

  223. Frank W (1964) Syntheses of selenium-containing peptides. 3. Diseleno-oxytocin. Hoppe Seylers Z Physiol Chem 339(1):222–229

    Article  CAS  PubMed  Google Scholar 

  224. Walter R, Chan W-Y (1967) Syntheses and pharmacological properties of selenium isologs of oxytocin and deaminooxytocin. J Am Chem Soc 89(15):3892–3898. https://doi.org/10.1021/ja00991a037

    Article  CAS  PubMed  Google Scholar 

  225. Walter R, du Vigneaud V (1965) 6-Hemi-L-selenocystine-oxytocin and 1-deamino-6-hemi-L-selenocystine-oxytocin, highly potent isologs of oxytocin and 1-deaminooxytocin. J Am Chem Soc 87(18):4192–4193. https://doi.org/10.1021/ja01096a036

    Article  CAS  PubMed  Google Scholar 

  226. Walter R, du Vigneaud V (1966) 1-Deamino-1,6-L-selenocystineoxytocin; a highly potent isolog of 1-deaminooxytocin. J Am Chem Soc 88(6):1331–1332. https://doi.org/10.1021/ja00958a053

    Article  CAS  Google Scholar 

  227. de Araujo AD, Mobli M, Castro J et al (2014) Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nat Commun 5:3165. https://doi.org/10.1038/ncomms4165

    Article  CAS  PubMed  Google Scholar 

  228. Muttenthaler M, Andersson A, Vetter I et al (2017) Subtle modifications to oxytocin produce ligands that retain potency and improved selectivity across species. Sci Signal 10(508). https://doi.org/10.1126/scisignal.aan3398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Ferrier BM, Vd V (1966) 9-Deamidooxytocin, an analog of the hormone containing a glycine residue in place of the glycinamide residue. J Med Chem 9(1):55–57. https://doi.org/10.1021/jm00319a014

    Article  CAS  PubMed  Google Scholar 

  230. Smith CW, Walter R, Moore S et al (1978) Replacement of the disulfide bond in oxytocin by an amide group. Synthesis and some biological properties of (cyclo-(1-L-aspartic acid,6-L-alpha,beta-diaminopropionic acid))oxytocin. J Med Chem 21(1):117–120

    Article  CAS  PubMed  Google Scholar 

  231. Bissantz C, Bleicher K, Grundschober C (2014) Peptides as oxytocin receptor agonists and their use in treatment of mental and behavioral disorders. WO2014095773

    Google Scholar 

  232. Bissantz C, Bleicher K, Grundschober C (2015) Peptides as oxytocin receptor agonists and their use in treatment of mental and behavioral disorders. WO2015185467

    Google Scholar 

  233. Bleicher K, Cueni A, Puentener K et al (2016) Preparation of oxytocin analogs as oxytocin receptor agonists and their use in treatment of neurological disorders. WO2016020349A1

    Google Scholar 

  234. Adachi Y, Sakimura K, Shimizu Y et al (2017) Potent and selective oxytocin receptor agonists without disulfide bridges. Bioorg Med Chem Lett 27(11):2331–2335. https://doi.org/10.1016/j.bmcl.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  235. Bissantz C, Bleicher K, Chakraborty K et al (2016) Peptides as oxytocin receptor agonists and their use in treatment of mental and behavioral disorders. WO2015185584

    Google Scholar 

  236. Lebl M, Barth T, Jost K (1978) Amino acids and peptides. Part CIL. Synthesis, reduction, and pharmacological properties of the sulfoxides of some carba-analogs of oxytocin. Collect Czechoslov Chem Commun 43(6):1538. https://doi.org/10.1135/cccc19781538

    Article  CAS  Google Scholar 

  237. Smith CW, Ferger MF (1976) Synthesis and some pharmacological properties of five analogs of oxytocin having L-homocysteine in position 6. J Med Chem 19(2):250–254

    Article  CAS  PubMed  Google Scholar 

  238. Chen L, Zoulikova I, Slaninova J et al (1997) Synthesis and pharmacology of novel analogs of oxytocin and deaminooxytocin: directed methods for the construction of disulfide and trisulfide bridges in peptides. J Med Chem 40(6):864–876

    Article  CAS  PubMed  Google Scholar 

  239. Bodanszky M, Bath RJ (1968) Hindered amines in peptide synthesis. Synthesis of 7-glycine-oxytocin. Chem Commun (13):766–767

    Google Scholar 

  240. Bespalova ZD, Martynov VF, Titov MI (1968) New analogs of oxytocin, 7-glycineoxytocin and 7-D-leucineoxytocin. Zh Obshch Khim 38(8):1684–1687

    CAS  Google Scholar 

  241. Walter R, Smith CW, Roy J et al (1976) Oxytocin analogues with combined high smooth muscle and negligible antidiuretic activities. Investigation of position 7 in neurohypophyseal hormones. J Med Chem 19(6):822–825

    Article  CAS  PubMed  Google Scholar 

  242. Walter R, Yamanaka T, Sakakibara S (1974) A neurohypophyseal hormone analog with selective oxytocin-like activities and resistance to enzymatic inactivation: an approach to the design of peptide drugs. Proc Natl Acad Sci U S A 71(5):1901–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Grzonka Z, Lammek B, Gazis D et al (1983) Synthesis and some pharmacological properties of [4-threonine,7-sarcosine]oxytocin, a peptide with high oxytocic potency, and of [4-threonine,7-N-methylalanine]oxytocin. J Med Chem 26(12):1786–1787

    Article  CAS  PubMed  Google Scholar 

  244. Grzonka Z, Lammek B, Kasprzykowski F et al (1983) Synthesis and some pharmacological properties of oxytocin and vasopressin analogues with sarcosine or N-methyl-L-alanine in position 7. J Med Chem 26(4):555–559

    Article  CAS  PubMed  Google Scholar 

  245. Lowbridge J, Manning M, Haldar J et al (1977) Synthesis and some pharmacological properties of [4-threonine, 7-glycine]oxytocin, [1-(L-2-hydroxy-3-mercaptopropanoic acid), 4-threonine, 7-glycine]oxytocin (hydroxy[Thr4, Gly7]oxytocin), and [7-Glycine]oxytocin, peptides with high oxytocic-antidiuretic selectivity. J Med Chem 20(1):120–123

    Article  CAS  PubMed  Google Scholar 

  246. Tence M, Guillon G, Bottari S et al (1990) Labelling of vasopressin and oxytocin receptors from the human uterus. Eur J Pharmacol 191(3):427–436. https://doi.org/0014-2999(90)94177-Y

    Google Scholar 

  247. Mihai R, Coculescu M, Wakerley JB et al (1994) The effects of [Arg8]vasopressin and [Arg8]vasotocin on the firing rate of suprachiasmatic neurons in vitro. Neuroscience 62(3):783–792

    Article  CAS  PubMed  Google Scholar 

  248. Guillon G, Derick S, Pena A et al (2004) The discovery of novel vasopressin V1b receptor ligands for pharmacological, functional and structural investigations. J Neuroendocrinol 16(4):356–361. https://doi.org/10.1111/j.0953-8194.2004.01163.x

    Article  CAS  PubMed  Google Scholar 

  249. Wisniewski K, Galyean R, Tariga H et al (2011) New, potent, selective, and short-acting peptidic V1a receptor agonists. J Med Chem 54(13):4388–4398. https://doi.org/10.1021/jm200278m

    Article  CAS  PubMed  Google Scholar 

  250. Rosamond JD, Ferger MF (1976) Synthesis and some pharmacological properties of oxytocin analogues having L-thiazolidine-4-carboxylic acid in position 7. J Med Chem 19(7):873–876

    Article  CAS  PubMed  Google Scholar 

  251. Grzonka Z, Mishra PK, Bothner-By AA (1985) Conformational preferences and binding to neurophysins of oxytocin analogs with sarcosine or N-methylalanine in position 7. Int J Pept Protein Res 25(4):375–381

    Article  CAS  PubMed  Google Scholar 

  252. Sawyer WH, Manning M (1971) 4-Threonine analogues of neurohypophysial hormones with selectively enhanced oxytocin-like activities. J Endocrinol 49(1):151–165

    Article  CAS  PubMed  Google Scholar 

  253. Rimpler M, Schoeberl A (1969) Synthesis of nonapeptide with oxytocin activity. Naturwissenschaften 56(12):638

    Article  CAS  PubMed  Google Scholar 

  254. Rimpler M (1971) [1-Deamino]lysinevasotocin, a disulfide polypeptide exhibiting oxytocin activity. Justus Liebigs Ann Chem 745:8–19

    Article  CAS  Google Scholar 

  255. Surovec D, Hoffman PL, Walter R (1974) Comparison of some biological activities of arginine vasotocin and synthetic analogs. Experientia 30(7):823–824

    Article  CAS  PubMed  Google Scholar 

  256. Chini B, Chinol M, Cassoni P et al (2003) Improved radiotracing of oxytocin receptor-expressing tumours using the new [111In]-DOTA-Lys8-deamino-vasotocin analogue. Br J Cancer 89(5):930–936. https://doi.org/10.1038/sj.bjc.6601189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  257. Busnelli M, Kleinau G, Muttenthaler M et al (2016) Design and characterization of superpotent bivalent ligands targeting oxytocin receptor dimers via a channel-like structure. J Med Chem 59(15):7152–7166. https://doi.org/10.1021/acs.jmedchem.6b00564

    Article  CAS  PubMed  Google Scholar 

  258. Hlavacek J, Fric I (1989) Amino acids and peptides. Part CCXIII. The effect of non-coded amino acids on the degradation of oxytocin analogs with α-chymotrypsin. Collect Czechoslov Chem Commun 54(8):2261. https://doi.org/10.1135/cccc19892261

    Article  CAS  Google Scholar 

  259. Sciabola S, Goetz GH, Bai G et al (2016) Systematic N-methylation of oxytocin: Impact on pharmacology and intramolecular hydrogen bonding network. Bioorg Med Chem 24(16):3513–3520. https://doi.org/10.1016/j.bmc.2016.05.062

    Article  CAS  PubMed  Google Scholar 

  260. Choc MG (1997) Bioavailability and pharmacokinetics of cyclosporine formulations: Neoral vs Sandimmune. Int J Dermatol 36(Suppl 1):1–6

    Article  PubMed  Google Scholar 

  261. Goetz GH, Farrell W, Shalaeva M et al (2014) High throughput method for the indirect detection of intramolecular hydrogen bonding. J Med Chem 57(7):2920–2929. https://doi.org/10.1021/jm401859b

    Article  CAS  PubMed  Google Scholar 

  262. Urry DW, Walter R (1971) Proposed conformation of oxytocin in solution. Proc Natl Acad Sci U S A 68(5):956–958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  263. Ohno A, Kawasaki N, Fukuhara K et al (2010) Complete NMR analysis of oxytocin in phosphate buffer. Magn Reson Chem 48(2):168–172. https://doi.org/10.1002/mrc.2557

    Article  CAS  PubMed  Google Scholar 

  264. Ashworth DM, Batt AR, Baxter AJ et al (2006) Nonpeptide oxytocin agonists. Drugs Future 31(4):345–353

    Article  CAS  Google Scholar 

  265. Kablaoui N, Vanase-Frawley M, Sciabola S (2018) Hybrid peptide-small molecule oxytocin analogs are potent and selective agonists of the oxytocin receptor. Bioorg Med Chem Lett 28(3):415–419. https://doi.org/10.1016/j.bmcl.2017.12.027

    Article  CAS  PubMed  Google Scholar 

  266. Breton C, Haenggeli C, Barberis C et al (2002) Presence of functional oxytocin receptors in cultured human myoblasts. J Clin Endocrinol Metab 87(3):1415–1418. https://doi.org/10.1210/jcem.87.3.8537

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Wiśniewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wiśniewski, K. (2019). Design of Oxytocin Analogs. In: Goetz, G. (eds) Cyclic Peptide Design. Methods in Molecular Biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9504-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9503-5

  • Online ISBN: 978-1-4939-9504-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics