Skip to main content

Building upon Nature’s Framework: Overview of Key Strategies Toward Increasing Drug-Like Properties of Natural Product Cyclopeptides and Macrocycles

  • Protocol
  • First Online:
Book cover Cyclic Peptide Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2001))

Abstract

The pharmaceutical industry has focused mainly in the development of small-molecule entities intended for oral administration for the past decades. As a result, the majority of existing drugs address only a narrow range of biological targets. In the era of post-genomics, transcriptomics, and proteomics, there is an increasing interest on larger modulators of proteins that can span larger surfaces, access new therapeutic mechanisms of action, and provide greater target specificity. Traditional drug-like molecules developed using “rule-of-five” (Ro5) guidelines have been proven ineffective against a variety of challenging targets, such as protein–protein interactions, nucleic acid complexes, and antibacterial modalities. However, natural products are known to be effective at modulating such targets, leading to a renewed focus by medicinal chemists on investigating underrepresented chemical scaffolds associated with natural products. Here we describe recent efforts toward identification of novel natural cyclopeptides and macrocycles as well as selected medicinal chemistry strategies to increase drug-like properties or further exploration of their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hill TA, Shepherd NE, Diness F, Fairlie DP (2014) Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 53:13020–13041

    Article  CAS  Google Scholar 

  2. Wessjohann LA, Ruijter E, Garcia-Rivera D, Brandt W (2005) What can a chemist learn from nature’s macrocycles? A brief, conceptual view. Mol Divers 9:171–186

    Article  CAS  Google Scholar 

  3. Naylor MR, Bockus AT, Blanco MJ, Lokey RS (2017) Cyclic peptide natural products chart the frontier of oral bioavailability in the pursuit of undruggable targets. Curr Opin Chem Biol 38:141–147

    Article  CAS  Google Scholar 

  4. Wetzler M, Hamilton P (2018) Peptides as therapeutics. In: Koutsopoulos S (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing Elsevier Ltd.

    Google Scholar 

  5. Qvit N, Rubin SJ, Urban TJ, Mochly-Rosen D, Gross ER (2017) Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 22:454–462

    Article  CAS  Google Scholar 

  6. Pomilio AB, Battista ME, Vitale AA (2006) Naturally-occurring cyclopeptides: structures and bioactivity. Curr Org Chem 10:2075–2121

    Article  CAS  Google Scholar 

  7. Bockus AT, McEwen CM, Lokey RS (2013) Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr Top Med Chem 13:821–836

    Article  CAS  Google Scholar 

  8. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  CAS  Google Scholar 

  9. Rosenthal-Aizman K, Svensson G, Undén A (2004) Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues. J Am Chem Soc 126:3372–3373

    Article  CAS  Google Scholar 

  10. Qian Z, Dougherty PG, Pei D (2017) Targeting intracellular protein–protein interactions with cell-permeable cyclic peptides. Curr Opin Chem Biol 38:80–86

    Article  CAS  Google Scholar 

  11. Senthilkumar B, Rajasekaran R (2017) Analysis of the structural stability among cyclotide members through cystine knot fold that underpins its potential use as a drug scaffold. Inter J Peptide Res Therap 23(1):1

    Article  CAS  Google Scholar 

  12. Molesini B, Treggiari D, Dalbeni A, Minuz P, Pandolfini T (2017) Plant cystine-knot peptides: pharmacological perspectives. Br J Clin Pharmacol 83:63–70

    Article  CAS  Google Scholar 

  13. Dobson CM (2004) Chemical space and biology. Nature 432:824–828

    Article  CAS  Google Scholar 

  14. Borel J.F. (1982) History of cyclosporin A and its significance in immunology. In: Cyclosporin A, pp 5–17

    Google Scholar 

  15. Borel JA, Feurer C, Gubler HU, Stähelin H (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6:468–475

    Article  CAS  Google Scholar 

  16. Wenger RM (1984) Synthesis of cyclosporine. Total syntheses of ‘cyclosporin A’ and ‘cyclosporin H’, two fungal metabolites isolated from the species Tolypocladium inflatum GAMS. Helv Chim Acta 67:502–525

    Article  CAS  Google Scholar 

  17. Sweeney ZK, Fu J, Wiedmann B (2014) From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J Med Chem 57:7145–7159

    Article  CAS  Google Scholar 

  18. Bai Y, King C, Francis C, Gooch J (2017) Cyclosporin A alters expression of renal MicroRNAs: new insights into calcineurin inhibitor nephrotoxicity. FASEB J 31:757–713

    Article  Google Scholar 

  19. Naicker S, Yatscoff RW, Foster RT (2009) Deuterated cyclosporine analogs and methods of making the same. US Patent 7(521):421

    Google Scholar 

  20. Ahlbach CL, Lexa KW, Bockus AT, Chen V, Crews P, Jacobson MP, Lokey RS (2015) Beyond cyclosporine A: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Med Chem 7:2121–2130

    Article  CAS  Google Scholar 

  21. Wang CK, Swedberg JE, Harvey PJ, Kaas Q, Craik DJ (2018) Conformational flexibility is a determinant of permeability for cyclosporin. J Phys Chem B 122:2261–2276

    Article  CAS  Google Scholar 

  22. Rossi Sebastiano M, Doak BC, Backlund M, Poongavanam V, Over B, Ermondi G, Caron G, Matsson P, Kihlberg J (2018) Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem 61:4189–4202

    Article  CAS  Google Scholar 

  23. Räder AF, Reichart F, Weinmüller M, Kessler H (2018) Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 26:2766–2773

    Article  Google Scholar 

  24. Consden R, Gordon AH, Martin AJ, Synge RL (1947) Gramicidin S: the sequence of the amino-acid residues. Biochem J 41:596

    Article  CAS  Google Scholar 

  25. Kondejewski LH, Farmer SW, Wishart DS, Hancock RE, Hodges RS (1996) Gramicidin S is active against both gram-positive and gram-negative bacteria. Chem Biol Drug Des 47:460–466

    CAS  Google Scholar 

  26. Abraham T, Prenner EJ, Lewis RN, Mant CT, Keller S, Hodges RS, McElhaney RN (2014) Structure–activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes. Biochim Biophys Acta 1838:1420–1429

    Article  CAS  Google Scholar 

  27. Meanwell NA (2011) Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem 54:2529–2591

    Article  CAS  Google Scholar 

  28. Xiao J, Weisblum B, Wipf P (2005) Electrostatic versus steric effects in peptidomimicry: synthesis and secondary structure analysis of gramicidin S analogues with (E)-alkene peptide isosteres. J Am Chem Soc 127:5742–5743

    Article  CAS  Google Scholar 

  29. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  CAS  Google Scholar 

  30. Carney DW, Schmitz KR, Truong JV, Sauer RT, Sello JK (2014) Restriction of the conformational dynamics of the cyclic acyldepsipeptide antibiotics improves their antibacterial activity. J Am Chem Soc 136:1922–1929

    Article  CAS  Google Scholar 

  31. Goodreid JD, Wong K, Leung E, McCaw SE, Gray-Owen SD, Lough A, Houry WA, Batey RA (2014) Total synthesis and antibacterial testing of the A54556 cyclic acyldepsipeptides isolated from Streptomyces hawaiiensis. J Nat Prod 77:2170–2181

    Article  CAS  Google Scholar 

  32. Socha AM, Tan NY, LaPlante KL, Sello JK (2010) Diversity-oriented synthesis of cyclic acyldepsipeptides leads to the discovery of a potent antibacterial agent. Bioorganic Med Chem 18:7193–7202

    Article  CAS  Google Scholar 

  33. Goodreid JD, Janetzko J, Santa Maria Jr JP, Wong KS, Leung E, Eger BT, Bryson S, Pai EF, Gray-Owen SD, Walker S, Houry WA. (2016) Development and characterization of potent cyclic acyldepsipeptide analogues with increased antimicrobial activity. J Med Chem 59:624–646

    Article  CAS  Google Scholar 

  34. Naylor M, Ly A, Schwochert J, Desai P, Gonzalez Valcarcel IC, Barrett J, Sawada G, Blanco MJ, Lokey S (2016) Amide-​to-​ester substitutions modify the permeability and ADME properties of natural and synthetic cyclic peptides. From abstracts of papers, 252nd ACS National Meeting & Exposition, Philadelphia, PA, United States, August 21–25, MEDI-344

    Google Scholar 

  35. Lukat P, Katsuyama Y, Wenzel S, Binz T, König C, Blankenfeldt W, Brönstrup M, Müller R (2017) Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity. Chem Sci 8:7521–7527

    Article  CAS  Google Scholar 

  36. Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S, Zaburannyi N, Herrmann J, Wenzel SC, König C, Ammerman NC (2015) Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348:1106–1112

    Article  CAS  Google Scholar 

  37. Dong M, Pfeiffer B, Altmann KH (2017) Recent developments in natural product-based drug discovery for tuberculosis. Drug Discov Today 22:585–591

    Article  CAS  Google Scholar 

  38. Salvador-Reyes LA, Luesch H (2015) Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 32:478–503

    Article  CAS  Google Scholar 

  39. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807

    Article  CAS  Google Scholar 

  40. Poli G, Di Fabio R, Ferrante L, Summa V, Botta M (2017) Largazole analogues as histone deacetylase inhibitors and anticancer agents: an overview of structure–activity relationships. ChemMedChem 12:1917–1926

    Article  CAS  Google Scholar 

  41. Chen QY, Chaturvedi PR, Luesch H (2018) Process development and scale-up total synthesis of Largazole, a potent Class I histone deacetylase inhibitor. Org Process Res Dev 22:190–199

    Article  CAS  Google Scholar 

  42. Cole KE, Dowling DP, Boone MA, Phillips AJ, Christianson DW (2011) Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J Am Chem Soc 133:12474–12477

    Article  CAS  Google Scholar 

  43. Almaliti J, Al-Hamashi AA, Negmeldin AT, Hanigan CL, Perera L, Pflum MK, Casero Jr RA, Tillekeratne LV. (2016) Largazole analogues embodying radical changes in the depsipeptide ring: development of a more selective and highly potent analogue. J Med Chem 59:10642–10660

    Article  CAS  Google Scholar 

  44. Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 55:283–288

    Article  CAS  Google Scholar 

  45. Bionda N, Pitteloud JP, Cudic P (2013) Cyclic lipodepsipeptides: a new class of antibacterial agents in the battle against resistant bacteria. Future Med Chem 5:1311–1330

    Article  CAS  Google Scholar 

  46. Daley P, Louie T, Lutz JE, Khanna S, Stoutenburgh U, Jin M, Adedoyin A, Chesnel L, Guris D, Larson KB, Murata Y (2017) Surotomycin versus vancomycin in adults with Clostridium difficile infection: primary clinical outcomes from the second pivotal, randomized, double-blind, Phase 3 trial. J Antimicrob Chemother 72:3462–3470

    Article  CAS  Google Scholar 

  47. Yin N, Li J, He Y, Herradura P, Pearson A, Mesleh MF, Mascio CT, Howland K, Steenbergen J, Thorne GM, Citron D (2015) Structure–activity relationship studies of a series of semisynthetic lipopeptides leading to the discovery of Surotomycin, a novel cyclic lipopeptide being developed for the treatment of Clostridium difficile-associated diarrhea. J Med Chem 58:5137–5142

    Article  CAS  Google Scholar 

  48. Lee CH, Patino H, Stevens C, Rege S, Chesnel L, Louie T, Mullane KM (2016) Surotomycin versus vancomycin for Clostridium difficile infection: Phase 2, randomized, controlled, double-blind, non-inferiority, multicentre trial. J Antimicrob Chemother 71:2964–2971

    Article  CAS  Google Scholar 

  49. Borders DB, Leese RA, Jarolmen H, Francis ND, Fantini AA, Falla T, Fiddes JC, Aumelas A (2007) Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core. J Nat Prod 70:443–446

    Article  CAS  Google Scholar 

  50. Kleijn LH, Oppedijk SF, ‘t Hart P, Van Harten RM, Martin-Visscher LA, Kemmink J, Breukink E, Martin NI. (2016) Total synthesis of laspartomycin C and characterization of its antibacterial mechanism of action. J Med Chem 59:3569–3574

    Article  CAS  Google Scholar 

  51. Mi Y, Zhang J, He S, Yan X (2017) New peptides isolated from marine cyanobacteria, an overview over the past decade. Mar Drugs 15:132

    Article  Google Scholar 

  52. Reese MT, Gulavita NK, Nakao Y, Hamann MT, Yoshida WY, Coval SJ, Scheuer PJ (1996) Kulolide: a cytotoxic depsipeptide from a cephalaspidean mollusk, Philinopsis speciosa. J Am Chem Soc 118:11081–11084

    Article  CAS  Google Scholar 

  53. Boudreau PD, Byrum T, Liu WT, Dorrestein PC, Gerwick WH (2012) Viequeamide A, a cytotoxic member of the kulolide superfamily of cyclic depsipeptides from a marine button cyanobacterium. J Nat Prod 75:1560–1570

    Article  CAS  Google Scholar 

  54. Wang D, Song S, Tian Y, Xu Y, Miao Z, Zhang A (2013) Total synthesis of the marine cyclic depsipeptide viequeamide A. J Nat Prod 76:974–978

    Article  CAS  Google Scholar 

  55. Almaliti J, Malloy KL, Glukhov E, Spadafora C, Gutiérrez M, Gerwick WH (2017) Dudawalamides A–D, Antiparasitic Cyclic Depsipeptides from the Marine Cyanobacterium Moorea producens. J Nat Prod 80:1827–1836

    Article  CAS  Google Scholar 

  56. Just-Baringo X, Albericio F, Álvarez M (2014) Chiral thiazoline and thiazole building blocks for the synthesis of peptide-derived natural products. Curr Top Med Chem 14:1244–1256

    Article  CAS  Google Scholar 

  57. Nielsen DS, Hoang HN, Lohman RJ, Diness F, Fairlie DP (2012) Total synthesis, structure, and oral absorption of a thiazole cyclic peptide, sanguinamide A. Org Lett 14:5720–5723

    Article  CAS  Google Scholar 

  58. Bockus AT, Schwochert JA, Pye CR, Townsend CE, Sok V, Bednarek MA, Lokey RS (2015) Going out on a limb: delineating the effects of β-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of Sanguinamide A analogues. J Med Chem 58:7409–7418

    Article  CAS  Google Scholar 

  59. Desai PV, Raub TJ, Blanco MJ (2012) How hydrogen bonds impact P-glycoprotein transport and permeability. Bioorg Med Chem Lett 22:6540–6548

    Article  CAS  Google Scholar 

  60. Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, Burian M, Schilling NA, Slavetinsky C, Marschal M, Willmann M (2016) Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511–516

    Article  CAS  Google Scholar 

  61. Krismer B, Peschel A, Grond S, Zipperer A, Konnerth MC, Janek D (2016) Patent PCT Int Appl WO 2016151005

    Google Scholar 

  62. Mousa WK, Athar B, Merwin NJ, Magarvey NA (2017) Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 4:1302–1331

    Article  Google Scholar 

  63. Sekizawa R, Momose I, Kinoshita N, Naganawa H, Hamada M, Muraoka Y, Iinuma H, Takeuchi T (2001) Isolation and structural determination of phepropeptins A, B, C, and D, new proteasome inhibitors, produced by Streptomyces sp. J Antibiot 54:874–881

    Article  CAS  Google Scholar 

  64. Schwochert J, Lao Y, Pye CR, Naylor MR, Desai PV, Gonzalez Valcarcel IC, Barrett JA, Sawada G, Blanco MJ, Lokey RS (2016) Stereochemistry balances cell permeability and solubility in the naturally derived phepropeptin cyclic peptides. ACS Med Chem Lett 7:757–761

    Article  CAS  Google Scholar 

  65. Safavi-Hemami H, Brogan SE, Olivera BM (2018) Pain therapeutics from cone snail venoms: from Ziconotide to novel non-opioid pathways. J Proteomics 190:12–20

    Article  Google Scholar 

  66. Newcomb R, Abbruscato TJ, Singh T, Nadasdi L, Davis TP, Miljanich G (2000) Bioavailability of Ziconotide in brain: influx from blood, stability, and diffusion. Peptides 21:491–501

    Article  CAS  Google Scholar 

  67. Schmidtko A, Lötsch J, Freynhagen R, Geisslinger G (2010) Ziconotide for treatment of severe chronic pain. Lancet 375:1569–1577

    Article  CAS  Google Scholar 

  68. Thell K, Hellinger R, Sahin E, Michenthaler P, Gold-Binder M, Haider T, Kuttke M, Liutkevičiūtė Z, Göransson U, Gründemann C, Schabbauer G (2016) Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 113:3960–3965

    Article  CAS  Google Scholar 

  69. Aulakh VS, Ciufolini MA (2011) Total synthesis and complete structural assignment of thiocillin I. J Am Chem Soc 133:5900–5904

    Article  CAS  Google Scholar 

  70. Just-Baringo X, Albericio F, Álvarez M (2014) Thiopeptide antibiotics: retrospective and recent advances. Mar Drugs 12:317–351

    Article  CAS  Google Scholar 

  71. Tran HL, Lexa KW, Julien O, Young TS, Walsh CT, Jacobson MP, Wells JA (2017) Structure–activity relationship and molecular mechanics reveal the importance of ring entropy in the biosynthesis and activity of a natural product. J Am Chem Soc 139:2541–2544

    Article  CAS  Google Scholar 

  72. Oku N, Takada K, Fuller RW, Wilson JA, Peach ML, Pannell LK, McMahon JB, Gustafson KR (2010) Isolation, structural elucidation, and absolute stereochemistry of enigmazole A, a cytotoxic phosphomacrolide from the Papua New Guinea marine sponge Cinachyrella enigmatica. J Am Chem Soc 132:10278–10285

    Article  CAS  Google Scholar 

  73. Ai Y, Kozytska MV, Zou Y, Khartulyari AS, Maio WA, Smith AB III (2018) Total synthesis of the marine phosphomacrolide, (−)-Enigmazole A, exploiting multicomponent Type I Anion Relay Chemistry (ARC) in conjunction with a late-stage Petasis–Ferrier union/rearrangement. J Org Chem 83:6110–6126

    Article  CAS  Google Scholar 

  74. Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S, Zheng W, Seletsky BM, Palme MH, Habgood GJ (2001) In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61:1013–1021

    CAS  PubMed  Google Scholar 

  75. Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, Matelich MC, Scola PM, Spero DM, Yoon SK (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114:3162–3164

    Article  CAS  Google Scholar 

  76. Zheng W, Seletsky BM, Palme MH, Lydon PJ, Singer LA, Chase CE, Lemelin CA, Shen Y, Davis H, Tremblay L, Towle MJ (2004) Macrocyclic ketone analogues of halichondrin B. Bioorg Med Chem Lett 14:5551–5554

    Article  CAS  Google Scholar 

  77. Cortes J, Vahdat L, Blum JL, Twelves C, Campone M, Roché H, Bachelot T, Awada A, Paridaens R, Goncalves A, Shuster DE (2010) Phase II study of the halichondrin B analog eribulin mesylate in patients with locally advanced or metastatic breast cancer previously treated with an anthracycline, a taxane, and capecitabine. J Clin Oncol 28:3922–3928

    Article  CAS  Google Scholar 

  78. Camarero JA (2017) Cyclotides, a versatile ultrastable micro-protein scaffold for biotechnological applications. Bioorg Med Chem Lett 27:5089–5099

    Article  CAS  Google Scholar 

  79. Eliasen R, Daly NL, Wulff BS, Andresen TL, Conde-Frieboes KW, Craik DJ (2012) Design, synthesis, structural and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1. J Biol Chem 287:40493–40501

    Article  CAS  Google Scholar 

  80. Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084

    Article  CAS  Google Scholar 

  81. Reichlin S (1983) Somatostatin. N Engl J Med 309:1495–1501

    Article  CAS  Google Scholar 

  82. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904

    Article  CAS  Google Scholar 

  83. Beard R, Stucki A, Schmitt M, Py G, Grundschober C, Gee AD, Tate EW (2018) Building bridges for highly selective, potent and stable oxytocin and vasopressin analogs. Bioorg Med Chem 26:3039–3045

    Article  CAS  Google Scholar 

  84. Poongavanam V, Doak BC, Kihlberg J (2018) Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. Curr Opin Chem Biol 44:23–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Jesus Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Blanco, MJ. (2019). Building upon Nature’s Framework: Overview of Key Strategies Toward Increasing Drug-Like Properties of Natural Product Cyclopeptides and Macrocycles. In: Goetz, G. (eds) Cyclic Peptide Design. Methods in Molecular Biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9504-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9503-5

  • Online ISBN: 978-1-4939-9504-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics