Skip to main content

Design Principles for Intestinal Permeability of Cyclic Peptides

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2001))

Abstract

One of the most exciting facets of cyclic peptides is that they have the potential to be orally bioavailable, despite having physical properties well beyond the traditional “Rule-of-5” chemistry space (Lipinski et al., Adv Drug Deliv Rev. 23(1): 3–25, 1997). An important component of meeting this challenge is to design cyclic peptides with good intestinal permeability. Here we discuss the design principles for intestinal permeability that have been developed in recent year. These principles can be subdivided into three regimes: physical property guidelines, design strategies for the macrocyclic ring, and design strategies for side chains. The most important overall aims are to minimize solvent-exposed polarity while keeping size, flexibility, and lipophilicity within favorable ranges, thereby allowing peptide chemists to achieve intestinal permeability in addition to other important properties for their compounds, such as solubility and binding affinity. Here we describe a variety of design strategies that have been developed to help peptide chemists in this endeavor.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Terrett N (2013) Drugs in middle space. Med Chem Commun 4(3):474–475. https://doi.org/10.1039/C2MD90062A

    Article  CAS  Google Scholar 

  2. Legg B, Gupta SK, Rowland M, Johnson RWG, Solomon LR (1988) Cyclosporin: pharmacokinetics and detailed studies of plasma and erythrocyte binding during intravenous and oral administration. Eur J Clin Pharmacol 34(5):451–460. https://doi.org/10.1007/BF01046701

    Article  CAS  PubMed  Google Scholar 

  3. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1):3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  4. Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid Herbert A, Jelinek R, Gilon C, Hoffman A, Kessler H (2008) Improving Oral bioavailability of peptides by multiple N-methylation: Somatostatin analogues. Angew Chem Int Ed 47(14):2595–2599. https://doi.org/10.1002/anie.200705797

    Article  CAS  Google Scholar 

  5. White TR, Renzelman CM, Rand AC, Rezai T, McEwen CM, Gelev VM, Turner RA, Linington RG, Leung SSF, Kalgutkar AS, Bauman JN, Zhang Y, Liras S, Price DA, Mathiowetz AM, Jacobson MP, Lokey RS (2011) On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol 7:810. https://doi.org/10.1038/nchembio.664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rand AC, Leung SSF, Eng H, Rotter CJ, Sharma R, Kalgutkar AS, Zhang Y, Varma MV, Farley KA, Khunte B, Limberakis C, Price DA, Liras S, Mathiowetz AM, Jacobson MP, Lokey RS (2012) Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance. Med Chem Commun 3(10):1282–1289. https://doi.org/10.1039/C2MD20203D

    Article  CAS  Google Scholar 

  7. Nielsen Daniel S, Hoang Huy N, Lohman RJ, Hill Timothy A, Lucke Andrew J, Craik David J, Edmonds David J, Griffith David A, Rotter Charles J, Ruggeri Roger B, Price David A, Liras S, Fairlie David P (2014) Improving on nature: making a cyclic heptapeptide orally bioavailable. Angew Chem Int Ed 53(45):12059–12063. https://doi.org/10.1002/anie.201405364

    Article  CAS  Google Scholar 

  8. Bockus AT, Lexa KW, Pye CR, Kalgutkar AS, Gardner JW, Hund KCR, Hewitt WM, Schwochert JA, Glassey E, Price DA, Mathiowetz AM, Liras S, Jacobson MP, Lokey RS (2015) Probing the physicochemical boundaries of cell permeability and oral bioavailability in lipophilic macrocycles inspired by natural products. J Med Chem 58(11):4581–4589. https://doi.org/10.1021/acs.jmedchem.5b00128

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen Daniel S, Lohman RJ, Hoang Huy N, Hill Timothy A, Jones A, Lucke Andrew J, Fairlie David P (2015) Flexibility versus rigidity for orally bioavailable cyclic hexapeptides. Chembiochem 16(16):2289–2293. https://doi.org/10.1002/cbic.201500441

    Article  CAS  PubMed  Google Scholar 

  10. Boehm M, Beaumont K, Jones R, Kalgutkar AS, Zhang L, Atkinson K, Bai G, Brown JA, Eng H, Goetz GH, Holder BR, Khunte B, Lazzaro S, Limberakis C, Ryu S, Shapiro MJ, Tylaska L, Yan J, Turner R, Leung SSF, Ramaseshan M, Price DA, Liras S, Jacobson MP, Earp DJ, Lokey RS, Mathiowetz AM, Menhaji-Klotz E (2017) Discovery of potent and orally bioavailable macrocyclic peptide–peptoid hybrid CXCR7 modulators. J Med Chem 60(23):9653–9663. https://doi.org/10.1021/acs.jmedchem.7b01028

    Article  CAS  PubMed  Google Scholar 

  11. Price DA, Eng H, Farley KA, Goetz GH, Huang Y, Jiao Z, Kalgutkar AS, Kablaoui NM, Khunte B, Liras S, Limberakis C, Mathiowetz AM, Ruggeri RB, Quan J-M, Yang Z (2017) Comparative pharmacokinetic profile of cyclosporine (CsA) with a decapeptide and a linear analogue. Org Biomol Chem 15(12):2501–2506. https://doi.org/10.1039/C7OB00096K

    Article  CAS  PubMed  Google Scholar 

  12. Varma MVS, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, El-Kattan A, Troutman MD (2010) Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem 53(3):1098–1108. https://doi.org/10.1021/jm901371v

    Article  CAS  PubMed  Google Scholar 

  13. Kansy M, Senner F, Gubernator K (1998) Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem 41(7):1007–1010. https://doi.org/10.1021/jm970530e

    Article  CAS  PubMed  Google Scholar 

  14. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3):736–749

    Article  CAS  Google Scholar 

  15. Marelli Udaya K, Bezençon J, Puig E, Ernst B, Kessler H (2015) Enantiomeric cyclic peptides with different Caco-2 permeability suggest carrier-mediated transport. Chem Eur J 21(22):8023–8027. https://doi.org/10.1002/chem.201501270

    Article  CAS  PubMed  Google Scholar 

  16. Di L, Whitney-Pickett C, Umland John P, Zhang H, Zhang X, Gebhard David F, Lai Y, Federico James J, Davidson Ralph E, Smith R, Reyner Eric L, Lee C, Feng B, Rotter C, Varma Manthena V, Kempshall S, Fenner K, El-kattan Ayman F, Liston Theodore E, Troutman Matthew D (2011) Development of a new permeability assay using low-efflux MDCKII cells. J Pharm Sci 100(11):4974–4985. https://doi.org/10.1002/jps.22674

    Article  CAS  PubMed  Google Scholar 

  17. Ahlbach CL, Lexa KW, Bockus AT, Chen V, Crews P, Jacobson MP, Lokey RS (2015) Beyond cyclosporine a: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Med Chem 7(16):2121–2130. https://doi.org/10.4155/fmc.15.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang CK, Northfield SE, Swedberg JE, Colless B, Chaousis S, Price DA, Liras S, Craik DJ (2015) Exploring experimental and computational markers of cyclic peptides: charting islands of permeability. Eur J Med Chem 97:202–213. https://doi.org/10.1016/j.ejmech.2015.04.049

    Article  CAS  PubMed  Google Scholar 

  19. Furukawa A, Townsend CE, Schwochert J, Pye CR, Bednarek MA, Lokey RS (2016) Passive membrane permeability in cyclic Peptomer scaffolds is robust to extensive variation in side chain functionality and backbone geometry. J Med Chem 59(20):9503–9512. https://doi.org/10.1021/acs.jmedchem.6b01246

    Article  CAS  PubMed  Google Scholar 

  20. Pye CR, Hewitt WM, Schwochert J, Haddad TD, Townsend CE, Etienne L, Lao Y, Limberakis C, Furukawa A, Mathiowetz AM, Price DA, Liras S, Lokey RS (2017) Nonclassical size dependence of permeation defines bounds for passive adsorption of large drug molecules. J Med Chem 60(5):1665–1672. https://doi.org/10.1021/acs.jmedchem.6b01483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ovadia O, Greenberg S, Chatterjee J, Laufer B, Opperer F, Kessler H, Gilon C, Hoffman A (2011) The effect of multiple N-methylation on intestinal permeability of cyclic Hexapeptides. Mol Pharm 8(2):479–487. https://doi.org/10.1021/mp1003306

    Article  CAS  PubMed  Google Scholar 

  22. Marelli Udaya K, Ovadia O, Frank Andreas O, Chatterjee J, Gilon C, Hoffman A, Kessler H (2015) Cis-peptide bonds: a key for intestinal permeability of peptides? Chem Eur J 21(43):15148–15152. https://doi.org/10.1002/chem.201501600

    Article  CAS  PubMed  Google Scholar 

  23. Buckton LK, McAlpine SR (2018) Improving the cell permeability of polar cyclic peptides by replacing residues with alkylated amino acids, Asparagines, and D-amino acids. Org Lett 20(3):506–509. https://doi.org/10.1021/acs.orglett.7b03363

    Article  CAS  PubMed  Google Scholar 

  24. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the Oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  25. Doak Bradley C, Over B, Giordanetto F, Kihlberg J (2014) Oral Druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 21(9):1115–1142. https://doi.org/10.1016/j.chembiol.2014.08.013

    Article  CAS  PubMed  Google Scholar 

  26. Guimarães CRW, Mathiowetz AM, Shalaeva M, Goetz G, Liras S (2012) Use of 3D properties to characterize beyond rule-of-5 property space for passive permeation. J Chem Inf Model 52(4):882–890. https://doi.org/10.1021/ci300010y

    Article  CAS  PubMed  Google Scholar 

  27. Leung SSF, Mijalkovic J, Borrelli K, Jacobson MP (2012) Testing physical models of passive membrane permeation. J Chem Inf Model 52(6):1621–1636. https://doi.org/10.1021/ci200583t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goetz GH, Farrell W, Shalaeva M, Sciabola S, Anderson D, Yan J, Philippe L, Shapiro MJ (2014) High throughput method for the indirect detection of Intramolecular hydrogen bonding. J Med Chem 57(7):2920–2929. https://doi.org/10.1021/jm401859b

    Article  CAS  PubMed  Google Scholar 

  29. Goetz GH, Philippe L, Shapiro MJ (2014) EPSA: a novel supercritical fluid chromatography technique enabling the Design of Permeable Cyclic Peptides. ACS Med Chem Lett 5(10):1167–1172. https://doi.org/10.1021/ml500239m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bockus AT, Schwochert JA, Pye CR, Townsend CE, Sok V, Bednarek MA, Lokey RS (2015) Going out on a limb: delineating the effects of β-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of Sanguinamide a analogues. J Med Chem 58(18):7409–7418. https://doi.org/10.1021/acs.jmedchem.5b00919

    Article  CAS  PubMed  Google Scholar 

  31. Rossi Sebastiano M, Doak BC, Backlund M, Poongavanam V, Over B, Ermondi G, Caron G, Matsson P, Kihlberg J (2018) Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J Med Chem 61(9):4189–4202. https://doi.org/10.1021/acs.jmedchem.8b00347

    Article  CAS  PubMed  Google Scholar 

  32. Chatterjee J, Gilon C, Hoffman A, Kessler H (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41(10):1331–1342. https://doi.org/10.1021/ar8000603

    Article  CAS  PubMed  Google Scholar 

  33. Rezai T, Yu B, Millhauser GL, Jacobson MP, Lokey RS (2006) Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide Diastereomers. J Am Chem Soc 128(8):2510–2511. https://doi.org/10.1021/ja0563455

    Article  CAS  PubMed  Google Scholar 

  34. Rezai T, Bock JE, Zhou MV, Kalyanaraman C, Lokey RS, Jacobson MP (2006) Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in Silico prediction of the relative Permeabilities of cyclic peptides. J Am Chem Soc 128(43):14073–14080. https://doi.org/10.1021/ja063076p

    Article  CAS  PubMed  Google Scholar 

  35. Matsui K, Kido Y, Watari R, Kashima Y, Yoshida Y, Shuto S (2016) Highly Conformationally restricted Cyclopropane tethers with three-dimensional structural diversity drastically enhance the cell permeability of cyclic peptides. Chem Eur J 23(13):3034–3041. https://doi.org/10.1002/chem.201604946

    Article  CAS  PubMed  Google Scholar 

  36. Schwochert J, Turner R, Thang M, Berkeley RF, Ponkey AR, Rodriguez KM, Leung SSF, Khunte B, Goetz G, Limberakis C, Kalgutkar AS, Eng H, Shapiro MJ, Mathiowetz AM, Price DA, Liras S, Jacobson MP, Lokey RS (2015) Peptide to Peptoid substitutions increase cell permeability in cyclic Hexapeptides. Org Lett 17(12):2928–2931. https://doi.org/10.1021/acs.orglett.5b01162

    Article  CAS  PubMed  Google Scholar 

  37. March DR, Abbenante G, Bergman DA, Brinkworth RI, Wickramasinghe W, Begun J, Martin JL, Fairlie DP (1996) Substrate-based cyclic Peptidomimetics of Phe-Ile-Val that inhibit HIV-1 protease using a novel enzyme-binding mode. J Am Chem Soc 118(14):3375–3379. https://doi.org/10.1021/ja953790z

    Article  CAS  Google Scholar 

  38. Alex A, Millan DS, Perez M, Wakenhut F, Whitlock GA (2011) Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Med Chem Commun 2(7):669–674. https://doi.org/10.1039/C1MD00093D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan M. Mathiowetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mathiowetz, A.M. (2019). Design Principles for Intestinal Permeability of Cyclic Peptides. In: Goetz, G. (eds) Cyclic Peptide Design. Methods in Molecular Biology, vol 2001. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9504-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9504-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9503-5

  • Online ISBN: 978-1-4939-9504-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics