Skip to main content

Telomere and G-Quadruplex Colocalization Analysis by Immunofluorescence Fluorescence In Situ Hybridization (IF-FISH)

  • Protocol
  • First Online:
Book cover DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

Four-stranded G-quadruplexes consists of tracks of guanines that are stabilized by Hoogsteen base pairing. The formation of G-quadruplexes in genomic DNA contribute to numerous biological processes in vivo, including replication, transcription, and telomere maintenance. Here, we present a detailed method to detect the colocalization of G-quadruplexes with telomeres in vivo, using the BG4 antibody developed from Dr. Shankar Balasubramanian’s lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipps HJ, Rhodes D (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol 19(8):414–422. https://doi.org/10.1016/j.tcb.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  2. Li W, Wu P, Ohmichi T, Sugimoto N (2002) Characterization and thermodynamic properties of quadruplex/duplex competition. FEBS Lett 526(1–3):77–81

    CAS  PubMed  Google Scholar 

  3. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770–780. https://doi.org/10.1038/nrg3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43(18):8627–8637. https://doi.org/10.1093/nar/gkv862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bugaut A, Balasubramanian S (2012) 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res 40(11):4727–4741. https://doi.org/10.1093/nar/gks068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beaudoin JD, Perreault JP (2013) Exploring mRNA 3′-UTR G-quadruplexes: evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic Acids Res 41(11):5898–5911. https://doi.org/10.1093/nar/gkt265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balasubramanian S, Neidle S (2009) G-quadruplex nucleic acids as therapeutic targets. Curr Opin Chem Biol 13(3):345–353. https://doi.org/10.1016/j.cbpa.2009.04.637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buket O, Clement L, DanZhou Y (2014) DNA G-quadruplex and its potential as anticancer drug target. Sci China Chem 57(12):1605–1614. https://doi.org/10.1007/s11426-014-5235-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zahler AM, Williamson JR, Cech TR, Prescott DM (1991) Inhibition of telomerase by G-quartet DNA structures. Nature 350(6320):718–720. https://doi.org/10.1038/350718a0

    Article  CAS  PubMed  Google Scholar 

  10. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916. https://doi.org/10.1093/nar/gki609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275. https://doi.org/10.1038/nrd3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM, Lemaitre JM (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19(8):837–844. https://doi.org/10.1038/nsmb.2339

    Article  CAS  PubMed  Google Scholar 

  13. de Lange T (2002) Protection of mammalian telomeres. Oncogene 21(4):532–540. https://doi.org/10.1038/sj.onc.1205080

    Article  PubMed  Google Scholar 

  14. Podlevsky JD, Chen JJ (2012) It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 730(1–2):3–11. https://doi.org/10.1016/j.mrfmmm.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  15. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12(10):1133–1138. https://doi.org/10.1038/nm1006-1133

    Article  CAS  Google Scholar 

  16. Neidle S (2010) Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 277(5):1118–1125. https://doi.org/10.1111/j.1742-4658.2009.07463.x

    Article  CAS  PubMed  Google Scholar 

  17. Lemmens B, van Schendel R, Tijsterman M (2015) Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat Commun 6:8909. https://doi.org/10.1038/ncomms9909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5(3):182–186. https://doi.org/10.1038/nchem.1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shankar Balasubramanian (University of Cambridge, UK) for providing BG4 antibody (plasmid). This work was supported by Ministry of Science and Technology (2017YFC1001904), National Natural Science Foundation of China (91649102, 31771520, 21177091, 21647008, 31471293, 81501386, 81671054, 81771135), the Key Project of Tianjin Research Program of Application Foundation and Advanced Technology (15JCZDJC35100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, M., Liu, R., Wang, F. (2019). Telomere and G-Quadruplex Colocalization Analysis by Immunofluorescence Fluorescence In Situ Hybridization (IF-FISH). In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics