Skip to main content

Single-Molecule DNA Fiber Analyses to Characterize Replication Fork Dynamics in Living Cells

  • Protocol
  • First Online:
DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

Understanding the molecular dynamics of DNA replication in vivo has been a formidable challenge requiring the development of advanced technologies. Over the past 50 years or so, studies involving DNA autoradiography in bacterial cells have led to sophisticated DNA tract analyses in human cells to characterize replication dynamics at the single-molecule level. Our own lab has used DNA fiber analysis to characterize replication in helicase-deficient human cells. This work led us to propose a model in which the human DNA helicase RECQ1 acts as a governor of the single-stranded DNA binding protein RPA and regulates its bioavailability for DNA synthesis. We have also used the DNA fiber approach to investigate the interactive role of DDX11 helicase with a replication fork protection protein (Timeless) in human cells when they are under pharmacologically induced stress. In this methods chapter, we present a step-by-step protocol for the single-molecule DNA fiber assay. We describe experimental designs to study replication stress and staining patterns from pulse–chase labeling experiments to address the dynamics of replication forks in stressed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213

    Article  CAS  Google Scholar 

  2. Huberman JA, Riggs AD (1968) On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol 32(2):327–341

    Article  CAS  Google Scholar 

  3. Parra I, Windle B (1993) High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet 5(1):17–21. https://doi.org/10.1038/ng0993-17

    Article  CAS  PubMed  Google Scholar 

  4. Bensimon A, Simon A, Chiffaudel A, Croquette V, Heslot F, Bensimon D (1994) Alignment and sensitive detection of DNA by a moving interface. Science (New York, NY) 265(5181):2096–2098

    Article  CAS  Google Scholar 

  5. Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140(6):1285–1295

    Article  CAS  Google Scholar 

  6. Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279(19):20067–20075. https://doi.org/10.1074/jbc.M400022200

    Article  CAS  PubMed  Google Scholar 

  7. Quinet A, Carvajal-Maldonado D, Lemacon D, Vindigni A (2017) DNA fiber analysis: mind the gap! Methods Enzymol 591:55–82. https://doi.org/10.1016/bs.mie.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  8. Cohen SM, Chastain PD 2nd, Rosson GB, Groh BS, Weissman BE, Kaufman DG, Bultman SJ (2010) BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression. Nucleic Acids Res 38(20):6906–6919. https://doi.org/10.1093/nar/gkq559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Datta A, Ghatak D, Das S, Banerjee T, Paul A, Butti R, Gorain M, Ghuwalewala S, Roychowdhury A, Alam SK, Das P, Chatterjee R, Dasgupta M, Panda CK, Kundu GC, Roychoudhury S (2017) p53 gain-of-function mutations increase Cdc7-dependent replication initiation. EMBO Rep 18(11):2030–2050. https://doi.org/10.15252/embr.201643347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh S, Vaughan CA, Frum RA, Grossman SR, Deb S, Palit Deb S (2017) Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. J Clin Invest 127(5):1839–1855. https://doi.org/10.1172/jci87724

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brosh RM Jr (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13(8):542–558. https://doi.org/10.1038/nrc3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Banerjee T, Sommers JA, Huang J, Seidman MM, Brosh RM Jr (2015) Catalytic strand separation by RECQ1 is required for RPA-mediated response to replication stress. Curr Biol 25(21):2830–2838. https://doi.org/10.1016/j.cub.2015.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uhlmann F (2016) SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol 17(7):399–412. https://doi.org/10.1038/nrm.2016.30

    Article  CAS  PubMed  Google Scholar 

  14. Capo-Chichi JM, Bharti SK, Sommers JA, Yammine T, Chouery E, Patry L, Rouleau GA, Samuels ME, Hamdan FF, Michaud JL, Brosh RM Jr, Megarbane A, Kibar Z (2013) Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome. Hum Mutat 34(1):103–107. https://doi.org/10.1002/humu.22226

    Article  CAS  PubMed  Google Scholar 

  15. van der Lelij P, Chrzanowska KH, Godthelp BC, Rooimans MA, Oostra AB, Stumm M, Zdzienicka MZ, Joenje H, de Winter JP (2010) Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet 86(2):262–266. https://doi.org/10.1016/j.ajhg.2010.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cali F, Bharti SK, Di Perna R, Brosh RM Jr, Pisani FM (2016) Tim/Timeless, a member of the replication fork protection complex, operates with the Warsaw breakage syndrome DNA helicase DDX11 in the same fork recovery pathway. Nucleic Acids Res 44(2):705–717. https://doi.org/10.1093/nar/gkv1112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Institutes of Health, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Brosh Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dhar, S., Datta, A., Banerjee, T., Brosh, R.M. (2019). Single-Molecule DNA Fiber Analyses to Characterize Replication Fork Dynamics in Living Cells. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics