Skip to main content

Measuring UV Photoproduct Repair in Isolated Telomeres and Bulk Genomic DNA

  • Protocol
  • First Online:
DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

Telomere repeats at chromosomal ends are essential for genome stability and sustained cellular proliferation but are susceptible to DNA damage. Repair of damage at telomeres is influenced by numerous factors including telomeric binding proteins, sequence and structure. Ultraviolet (UV) light irradiation induces DNA photoproducts at telomeres that can interfere with telomere maintenance. Here we describe a highly sensitive method for quantifying the formation and removal of UV photoproducts in telomeres isolated from UV irradiated cultured human cells. Damage is detected by immunospot blotting of telomeres with highly specific antibodies against UV photoproducts. This method is adaptable for measuring other types of DNA damage at telomeres as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13:693–704

    Article  CAS  Google Scholar 

  2. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    Article  CAS  Google Scholar 

  3. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  Google Scholar 

  4. Fouquerel E, Parikh D, Opresko P (2016) DNA damage processing at telomeres: the ends justify the means. DNA Repair (Amst) 44:159–168

    Article  CAS  Google Scholar 

  5. Yoon JH, Lee CS, O’Connor TR, Yasui A, Pfeifer GP (2000) The DNA damage spectrum produced by simulated sunlight. J Mol Biol 299:681–693

    Article  CAS  Google Scholar 

  6. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  Google Scholar 

  7. DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Invest Dermatol 132:785–796

    Article  CAS  Google Scholar 

  8. Ikeda H, Aida J, Hatamochi A, Hamasaki Y, Izumiyama-Shimomura N, Nakamura K, Ishikawa N, Poon SS, Fujiwara M, Tomita K, Hiraishi N, Kuroiwa M, Matsuura M, Sanada Y, Kawano Y, Arai T, Takubo K (2014) Quantitative fluorescence in situ hybridization measurement of telomere length in skin with/without sun exposure or actinic keratosis. Hum Pathol 45:473–480

    Article  CAS  Google Scholar 

  9. Stout GJ, Blasco MA (2013) Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C. Cancer Res 73:1844–1854

    Article  CAS  Google Scholar 

  10. Kruk PA, Rampino NJ, Bohr VA (1995) DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci U S A 92:258–262

    Article  CAS  Google Scholar 

  11. Parikh D, Fouquerel E, Murphy CT, Wang H, Opresko PL (2015) Telomeres are partly shielded from ultraviolet-induced damage and proficient for nucleotide excision repair of photoproducts. Nat Commun 6:8214

    Article  Google Scholar 

  12. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Woodring Wright (University of Texas Southwestern Medical Center) for helpful discussion regarding the telomere isolation protocol and acknowledge Dr. Dhvani Parikh for her contributions toward developing and optimizing the method for UV photoproduct detection at telomeres. This work was supported by an NIH grant (R01ES022944, ES28242, ES025606 to P.L.O, R21ES027641, R01GM107559, R01GM123246 to H.W.), P30 ES025128 (through a pilot project grant to H.W. by CHHE at NCSU), and NIH grant (K99ES027028 to E.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L. Opresko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fouquerel, E., Barnes, R.P., Wang, H., Opresko, P.L. (2019). Measuring UV Photoproduct Repair in Isolated Telomeres and Bulk Genomic DNA. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics