Skip to main content

Assembling the Human Resectosome on DNA Curtains

  • Protocol
  • First Online:
DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

DNA double-strand breaks (DSBs) are a potentially lethal DNA lesions that disrupt both the physical and genetic continuity of the DNA duplex. Homologous recombination (HR) is a universally conserved genome maintenance pathway that initiates via nucleolytic processing of the broken DNA ends (resection). Eukaryotic DNA resection is catalyzed by the resectosome—a multicomponent molecular machine consisting of the nucleases DNA2 or Exonuclease 1 (EXO1), Bloom’s helicase (BLM), the MRE11-RAD50-NBS1 (MRN) complex, and additional regulatory factors. Here, we describe methods for purification and single-molecule imaging and analysis of EXO1, DNA2, and BLM. We also describe how to adapt resection assays to the high-throughput single-molecule DNA curtain assay. By organizing hundreds of individual molecules on the surface of a microfluidic flowcell, DNA curtains visualize protein complexes with the required spatial and temporal resolution to resolve the molecular choreography during critical DNA-processing reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A 100:12871–12876

    Article  CAS  Google Scholar 

  2. Vilenchik MM, Knudson AG (2006) Radiation dose-rate effects, endogenous DNA damage, and signaling resonance. Proc Natl Acad Sci U S A 103:17874–17879

    Article  CAS  Google Scholar 

  3. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  Google Scholar 

  4. Symington LS (2016) Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol 51:195–212

    Article  CAS  Google Scholar 

  5. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  Google Scholar 

  6. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740

    Article  Google Scholar 

  7. Cannavo E, Cejka P (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514:122–125

    Article  CAS  Google Scholar 

  8. Paull TT, Gellert M (1998) The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol Cell 1:969–979

    Article  CAS  Google Scholar 

  9. Shibata A, Moiani D, Arvai AS et al (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7–18

    Article  CAS  Google Scholar 

  10. Lukas C, Melander F, Stucki M et al (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 23:2674–2683

    Article  CAS  Google Scholar 

  11. Stracker TH, Petrini JHJ (2011) The MRE11 complex: starting from the ends. Nat Rev Mol Cell Biol 12:90–103

    Article  CAS  Google Scholar 

  12. Lee J-H, Mand MR, Deshpande RA et al (2013) Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex. J Biol Chem 288:12840–12851

    Article  CAS  Google Scholar 

  13. Tauchi H, Kobayashi J, Morishima K et al (2002) Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 420:93–98

    Article  CAS  Google Scholar 

  14. Desai-Mehta A, Cerosaletti KM, Concannon P (2001) Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol Cell Biol 21:2184–2191

    Article  CAS  Google Scholar 

  15. Williams RS, Dodson GE, Limbo O et al (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99

    Article  CAS  Google Scholar 

  16. Deshpande RA, Lee J-H, Arora S et al (2016) Nbs1 converts the human Mre11/Rad50 nuclease complex into an endo/exonuclease machine specific for protein-DNA adducts. Mol Cell 64:593–606

    Article  CAS  Google Scholar 

  17. Anand R, Ranjha L, Cannavo E et al (2016) Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol Cell 64:940–950

    Article  CAS  Google Scholar 

  18. Myler LR, Gallardo IF, Soniat MM et al (2017) Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair. Mol Cell 67:891–898. e4

    Article  CAS  Google Scholar 

  19. Mimitou EP, Symington LS (2008) Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770–774

    Article  CAS  Google Scholar 

  20. Zhu Z, Chung W-H, Shim EY et al (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981–994

    Article  CAS  Google Scholar 

  21. Garcia V, Phelps SE, Gray S et al (2011) Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479:241–244

    Article  CAS  Google Scholar 

  22. Cejka P, Cannavo E, Polaczek P et al (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112–116

    Article  CAS  Google Scholar 

  23. Nimonkar AV, Genschel J, Kinoshita E et al (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25:350–362

    Article  CAS  Google Scholar 

  24. Nimonkar AV, Ozsoy AZ, Genschel J et al (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci U S A 105:16906–16911

    Article  CAS  Google Scholar 

  25. Niu H, Chung W-H, Zhu Z et al (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature 467:108–111

    Article  CAS  Google Scholar 

  26. Gravel S, Chapman JR, Magill C et al (2008) DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev 22:2767–2772

    Article  CAS  Google Scholar 

  27. Mimitou EP, Symington LS (2011) DNA end resection—Unraveling the tail. DNA Repair 10:344–348

    Article  CAS  Google Scholar 

  28. Tomimatsu N, Mukherjee B, Deland K et al (2012) Exo1 plays a major role in DNA end resection in humans and influences double-strand break repair and damage signaling decisions. DNA Repair 11:441–448

    Article  CAS  Google Scholar 

  29. Myler LR, Gallardo IF, Zhou Y et al (2016) Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proc Natl Acad Sci U S A 113:e1170–e1179

    Article  CAS  Google Scholar 

  30. Gallardo IF, Pasupathy P, Brown M et al (2015) High-throughput universal DNA curtain arrays for single-molecule fluorescence imaging. Langmuir 31:10310–10317

    Article  CAS  Google Scholar 

  31. Levikova M, Pinto C, Cejka P (2017) The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection. Genes Dev 31:493–502

    Article  CAS  Google Scholar 

  32. Levikova M, Klaue D, Seidel R et al (2013) Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity. Proc Natl Acad Sci U S A 110:E1992–E2001

    Article  CAS  Google Scholar 

  33. Pinto C, Kasaciunaite K, Seidel R et al (2016) Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases. elife 5:e18574

    Article  Google Scholar 

  34. Szankasi P, Smith GR (1992) A DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J Biol Chem 267:3014–3023

    CAS  PubMed  Google Scholar 

  35. Wu P, Takai H, de LT (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150:39–52

    Article  CAS  Google Scholar 

  36. Modrich P (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281:30305–30309

    Article  CAS  Google Scholar 

  37. Pasero P, Vindigni A (2017) Nucleases acting at stalled forks: how to reboot the replication program with a few shortcuts. Annu Rev Genet 51:477–499

    Article  CAS  Google Scholar 

  38. Orans J, McSweeney EA, Iyer RR et al (2011) Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family. Cell 145:212–223

    Article  CAS  Google Scholar 

  39. Shi Y, Hellinga HW, Beese LS (2017) Interplay of catalysis, fidelity, threading, and processivity in the exo- and endonucleolytic reactions of human exonuclease I. Proc Natl Acad Sci U S A 114(23):6010–6015

    Article  CAS  Google Scholar 

  40. Yang S-H, Zhou R, Campbell J et al (2013) The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1. EMBO J 32:126–139

    Article  CAS  Google Scholar 

  41. Genschel J, Modrich P (2003) Mechanism of 5′-directed excision in human mismatch repair. Mol Cell 12:1077–1086

    Article  CAS  Google Scholar 

  42. Finkelstein IJ, Visnapuu M-L, Greene EC (2010) Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468:983–987

    Article  CAS  Google Scholar 

  43. Duffy S, Tsao KL, Waugh DS (1998) Site-specific, enzymatic biotinylation of recombinant proteins in Spodoptera frugiperda cells using biotin acceptor peptides. Anal Biochem 262:122–128

    Article  CAS  Google Scholar 

  44. Sorenson AE, Askin SP, Schaeffer PM (2015) In-gel detection of biotin–protein conjugates with a green fluorescent streptavidin probe. Anal Methods 7:2087–2092

    Article  CAS  Google Scholar 

  45. Soniat MM, Myler LR, Schaub JM et al (2017) Next-Generation DNA curtains for single-molecule studies of homologous recombination. In: Eichman BF (ed) Methods in enzymology. Academic Press, Cambridge, MA, pp 259–281

    Google Scholar 

  46. Finkelstein IJ, Greene EC (2011) Supported lipid bilayers and DNA curtains for high-throughput single-molecule studies. Methods Mol Biol 745:447–461

    Article  CAS  Google Scholar 

  47. Miller AS, Daley JM, Pham NT et al (2017) A novel role of the Dna2 translocase function in DNA break resection. Genes Dev 31:503–510

    Article  CAS  Google Scholar 

  48. Zhou C, Pourmal S, Pavletich NP (2015) Dna2 nuclease-helicase structure, mechanism and regulation by Rpa. elife 4:e09832

    Article  Google Scholar 

  49. Masuda-Sasa T, Imamura O, Campbell JL (2006) Biochemical analysis of human Dna2. Nucleic Acids Res 34:1865–1875

    Article  CAS  Google Scholar 

  50. Croteau DL, Popuri V, Opresko PL et al (2014) Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 83:519–552

    Article  CAS  Google Scholar 

  51. Bernstein KA, Gangloff S, Rothstein R (2010) The RecQ DNA helicases in DNA repair. Annu Rev Genet 44:393–417

    Article  CAS  Google Scholar 

  52. Beresten SF, Stan R, van Brabant AJ et al (1999) Purification of overexpressed hexahistidine-tagged BLM N431 as oligomeric complexes. Protein Expr Purif 17:239–248

    Article  CAS  Google Scholar 

  53. Janscak P, Garcia PL, Hamburger F et al (2003) Characterization and mutational analysis of the RecQ core of the bloom syndrome protein. J Mol Biol 330:29–42

    Article  CAS  Google Scholar 

  54. Kitano K (2014) Structural mechanisms of human RecQ helicases WRN and BLM. Front Genet 5:366

    Article  Google Scholar 

  55. Bernstein DA, Keck JL (2003) Domain mapping of Escherichia coli RecQ defines the roles of conserved N- and C-terminal regions in the RecQ family. Nucleic Acids Res 31:2778–2785

    Article  CAS  Google Scholar 

  56. Kim YM, Choi B-S (2010) Structure and function of the regulatory HRDC domain from human Bloom syndrome protein. Nucleic Acids Res 38:7764–7777

    Article  CAS  Google Scholar 

  57. Liu Z, Macias MJ, Bottomley MJ et al (1999) The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Structure 7:1557–1566

    Article  CAS  Google Scholar 

  58. Brosh RM, Li J-L, Kenny MK et al (2000) Replication protein A physically interacts with the Bloom’s syndrome protein and stimulates its helicase activity. J Biol Chem 275:23500–23508

    Article  CAS  Google Scholar 

  59. Doherty KM, Sommers JA, Gray MD et al (2005) Physical and functional mapping of the replication protein A interaction domain of the Werner and Bloom syndrome helicases. J Biol Chem 280:29494–29505

    Article  CAS  Google Scholar 

  60. Kang D, Lee S, Ryu K-S et al (2018) Interaction of replication protein A with two acidic peptides from human Bloom syndrome protein. FEBS Lett 592:547–558

    Article  CAS  Google Scholar 

  61. Guo R-B, Rigolet P, Ren H et al (2007) Structural and functional analyses of disease-causing missense mutations in Bloom syndrome protein. Nucleic Acids Res 35:6297–6310

    Article  CAS  Google Scholar 

  62. Chatterjee S, Zagelbaum J, Savitsky P et al (2014) Mechanistic insight into the interaction of BLM helicase with intra-strand G-quadruplex structures. Nat Commun 5:ncomms6556

    Article  Google Scholar 

  63. Yodh JG, Stevens BC, Kanagaraj R et al (2009) BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. EMBO J 28:405–416

    Article  CAS  Google Scholar 

  64. Newman JA, Savitsky P, Allerston CK et al (2015) Crystal structure of the Bloom’s syndrome helicase indicates a role for the HRDC domain in conformational changes. Nucleic Acids Res 43:5221–5235

    Article  CAS  Google Scholar 

  65. Swan MK, Legris V, Tanner A et al (2014) Structure of human Bloom’s syndrome helicase in complex with ADP and duplex DNA. Acta Crystallogr D Biol Crystallogr 70:1465–1475

    Article  CAS  Google Scholar 

  66. Nguyen GH, Dexheimer TS, Rosenthal AS et al (2013) A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol 20:55–62

    Article  CAS  Google Scholar 

  67. Karow JK, Chakraverty RK, Hickson ID (1997) The Bloom’s syndrome gene product is a 3′–5′ DNA helicase. J Biol Chem 272:30611–30614

    Article  CAS  Google Scholar 

  68. Yao J, Larson DR, Vishwasrao HD et al (2005) Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci U S A 102:14284–14289

    Article  CAS  Google Scholar 

  69. Ebenstein Y, Mokari T, Banin U (2002) Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl Phys Lett 80:4033–4035

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Drs. Mauro Modesti and Tanya Paull for plasmids, cell pellets, and other reagents. This work was supported by the National Institutes of Health (GM120554 and CA092584) and the Welch Foundation (F-l808 to I.J.F.). M.M.S. is supported by a Postdoctoral Fellowship, PF-17-169-01-DMC, from the American Cancer Society. L.R.M. is supported by the National Cancer Institute (CA212452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya J. Finkelstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Soniat, M.M., Myler, L.R., Finkelstein, I.J. (2019). Assembling the Human Resectosome on DNA Curtains. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics