Skip to main content

Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers

  • Protocol
  • First Online:
DNA Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1999))

Abstract

Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Boveri’s original manuscript was published in 1914, and the 2008 reference is an English translation by Henry Harris.

Abbreviations

DSBs:

Double-strand breaks

dsDNA:

Double-stranded DNA

HR:

Homologous recombination

ICLs:

Interstrand cross-links

NHEJ:

Nonhomologous end joining

PARP:

Poly(ADP)-ribose polymerase

PTMs:

Posttranslational modifications

SSBs:

Single-strand breaks

ssDNA:

Single-stranded DNA

References

  1. Boveri T (2008) Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 121(Suppl 1):1–84

    Article  PubMed  Google Scholar 

  2. Nestmann ER, Hill RF (1974) Mutagenesis by mutator gene mutH1 in continuous cultures of Escherichia coli. J Bacteriol 119(1):33–35

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Loeb LA (2016) Human cancers express a mutator phenotype: hypothesis, origin, and consequences. Cancer Res 76(8):2057–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  5. Wyatt MD, Pittman DL (2006) Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem Res Toxicol 19(12):1580–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajesh P, Litvinchuk AV, Pittman DL, Wyatt MD (2011) The homologous recombination protein RAD51D mediates the processing of 6-thioguanine lesions downstream of mismatch repair. Mol Cancer Res 9(2):206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99–113

    Article  CAS  PubMed  Google Scholar 

  8. Thacker J (1999) The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells. Biochimie 81(1–2):77–85

    Article  CAS  PubMed  Google Scholar 

  9. Lieber MR, Wilson TE (2010) SnapShot: nonhomologous DNA end joining (NHEJ). Cell 142(3):496–496.e491

    Article  PubMed  CAS  Google Scholar 

  10. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308

    Article  CAS  PubMed  Google Scholar 

  11. Akutsu M, Dikic I, Bremm A (2016) Ubiquitin chain diversity at a glance. J Cell Sci 129(5):875–880

    Article  CAS  PubMed  Google Scholar 

  12. Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458):1658–1660

    Article  CAS  PubMed  Google Scholar 

  13. Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J, Agrawal DK (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med 15(1):232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Turgeon MO, Perry NJS, Poulogiannis G (2018) DNA damage, repair, and cancer metabolism. Front Oncol 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  15. Radhakrishnan SK, Jette N, Lees-Miller SP (2014) Non-homologous end joining: emerging themes and unanswered questions. DNA Repair (Amst) 17:2–8

    Article  CAS  Google Scholar 

  16. Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10(2):144–150

    Article  CAS  PubMed  Google Scholar 

  17. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423(2):157–168

    Article  CAS  PubMed  Google Scholar 

  19. You Z, Bailis JM (2010) DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20(7):402–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. West SC (2003) Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 4(6):435–445

    Article  CAS  PubMed  Google Scholar 

  21. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383

    Article  CAS  PubMed  Google Scholar 

  22. Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML (2013) Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Mol Cell 52(2):272–285

    Article  CAS  PubMed  Google Scholar 

  23. Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ, Poirier GG (2008) PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 283(2):1197–1208

    Article  CAS  PubMed  Google Scholar 

  24. Jazayeri A, Balestrini A, Garner E, Haber JE, Costanzo V (2008) Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO J 27(14):1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanaar R, Wyman C (2008) DNA repair by the MRN complex: break it to make it. Cell 135(1):14–16

    Article  CAS  PubMed  Google Scholar 

  26. Huen MS, Sy SM, Chen J (2010) BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol 11(2):138–148

    Article  CAS  PubMed  Google Scholar 

  27. Marechal A, Zou L (2015) RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 25(1):9–23

    Article  CAS  PubMed  Google Scholar 

  28. Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  CAS  PubMed  Google Scholar 

  29. Candelli A, Holthausen JT, Depken M, Brouwer I, Franker MA, Marchetti M, Heller I, Bernard S, Garcin EB, Modesti M et al (2014) Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. Proc Natl Acad Sci U S A 111(42):15090–15095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Short JM, Liu Y, Chen S, Soni N, Madhusudhan MS, Shivji MK, Venkitaraman AR (2016) High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy. Nucleic Acids Res 44(19):9017–9030

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu J, Zhao L, Xu Y, Zhao W, Sung P, Wang HW (2017) Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nat Struct Mol Biol 24(1):40–46

    Article  CAS  PubMed  Google Scholar 

  32. Jensen RB, Ozes A, Kim T, Estep A, Kowalczykowski SC (2013) BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair (Amst) 12(4):306–311

    Article  CAS  Google Scholar 

  33. Jensen RB, Carreira A, Kowalczykowski SC (2010) Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467(7316):678–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu J, Doty T, Gibson B, Heyer WD (2010) Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 17(10):1260–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thorslund T, McIlwraith MJ, Compton SA, Lekomtsev S, Petronczki M, Griffith JD, West SC (2010) The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17(10):1263–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qi Z, Redding S, Lee JY, Gibb B, Kwon Y, Niu H, Gaines WA, Sung P, Greene EC (2015) DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160(5):856–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265(5176):1241–1243

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez H, Kertokalio A, van Rossum-Fikkert S, Kanaar R, Wyman C (2013) Combined optical and topographic imaging reveals different arrangements of human RAD54 with presynaptic and postsynaptic RAD51-DNA filaments. Proc Natl Acad Sci U S A 110(28):11385–11390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holliday R (1964) The induction of mitotic recombination by mitomycin C in Ustilago and Saccharomyces. Genetics 50:323–335

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wyatt HD, West SC (2014) Holliday junction resolvases. Cold Spring Harb Perspect Biol 6(9):a023192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33(1):25–35

    Article  CAS  PubMed  Google Scholar 

  42. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349–404

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haber JE (1999) DNA recombination: the replication connection. Trends Biochem Sci 24(7):271–275

    Article  CAS  PubMed  Google Scholar 

  44. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19(13):3398–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307(5):1235–1245

    Article  CAS  PubMed  Google Scholar 

  46. Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25(16):7158–7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, Maas A, Essers J, Hickson ID, Kanaar R (2007) The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 14(11):1096–1104

    Article  CAS  PubMed  Google Scholar 

  48. Petermann E, Helleday T (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11(10):683–687

    Article  CAS  PubMed  Google Scholar 

  49. Malinge JM, Giraud-Panis MJ, Leng M (1999) Interstrand cross-links of cisplatin induce striking distortions in DNA. J Inorg Biochem 77(1–2):23–29

    Article  CAS  PubMed  Google Scholar 

  50. Lando DY, Chang CL, Fridman AS, Grigoryan IE, Galyuk EN, Hsueh YW, Hu CK (2014) Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin. J Inorg Biochem 137:85–93

    Article  CAS  PubMed  Google Scholar 

  51. Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, Elledge SJ, Walter JC (2009) The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326(5960):1698–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kottemann MC, Smogorzewska A (2013) Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493(7432):356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jo U, Kim H (2015) Exploiting the Fanconi anemia pathway for targeted anti-cancer therapy. Mol Cells 38(8):669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sengerova B, Wang AT, McHugh PJ (2011) Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair. Cell Cycle 10(23):3999–4008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Unno J, Itaya A, Taoka M, Sato K, Tomida J, Sakai W, Sugasawa K, Ishiai M, Ikura T, Isobe T et al (2014) FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep 7(4):1039–1047

    Article  CAS  PubMed  Google Scholar 

  56. Al-Minawi AZ, Lee YF, Hakansson D, Johansson F, Lundin C, Saleh-Gohari N, Schultz N, Jenssen D, Bryant HE, Meuth M et al (2009) The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links. Nucleic Acids Res 37(19):6400–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bergstralh DT, Sekelsky J (2008) Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet 24(2):70–76

    Article  CAS  PubMed  Google Scholar 

  58. Long DT, Raschle M, Joukov V, Walter JC (2011) Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333(6038):84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Danilowicz C, Peacock-Villada A, Vlassakis J, Facon A, Feinstein E, Kleckner N, Prentiss M (2014) The differential extension in dsDNA bound to Rad51 filaments may play important roles in homology recognition and strand exchange. Nucleic Acids Res 42(1):526–533

    Article  CAS  PubMed  Google Scholar 

  60. Benson FE, Stasiak A, West SC (1994) Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J 13(23):5764–5771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yuan ZM, Huang Y, Ishiko T, Nakada S, Utsugisawa T, Kharbanda S, Wang R, Sung P, Shinohara A, Weichselbaum R et al (1998) Regulation of Rad51 function by c-Abl in response to DNA damage. J Biol Chem 273(7):3799–3802

    Article  CAS  PubMed  Google Scholar 

  62. Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff SP, Wu Y, Arlinghaus R et al (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274(18):12748–12752

    Article  CAS  PubMed  Google Scholar 

  63. Subramanyam S, Ismail M, Bhattacharya I, Spies M (2016) Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics. Proc Natl Acad Sci U S A 113(41):E6045–e6054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Conilleau S, Takizawa Y, Tachiwana H, Fleury F, Kurumizaka H, Takahashi M (2004) Location of tyrosine 315, a target for phosphorylation by cAbl tyrosine kinase, at the edge of the subunit-subunit interface of the human Rad51 filament. J Mol Biol 339(4):797–804

    Article  CAS  PubMed  Google Scholar 

  65. Alligand B, Le Breton M, Marquis D, Vallette F, Fleury F (2017) Functional effects of diphosphomimetic mutations at cAbl-mediated phosphorylation sites on Rad51 recombinase activity. Biochimie 139:115–124

    Article  CAS  PubMed  Google Scholar 

  66. Yata K, Bleuyard JY, Nakato R, Ralf C, Katou Y, Schwab RA, Niedzwiedz W, Shirahige K, Esashi F (2014) BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability. Cell Rep 7(5):1547–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yata K, Lloyd J, Maslen S, Bleuyard JY, Skehel M, Smerdon SJ, Esashi F (2012) Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol Cell 45(3):371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cartwright R, Tambini CE, Simpson PJ, Thacker J (1998) The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Res 26(13):3084–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dosanjh MK, Collins DW, Fan W, Lennon GG, Albala JS, Shen Z, Schild D (1998) Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res 26(5):1179–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pittman DL, Weinberg LR, Schimenti JC (1998) Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics 49(1):103–111

    Article  CAS  PubMed  Google Scholar 

  71. Thacker J, Tambini CE, Simpson PJ, Tsui LC, Scherer SW (1995) Localization to chromosome 7q36.1 of the human XRCC2 gene, determining sensitivity to DNA-damaging agents. Hum Mol Genet 4(1):113–120

    Article  CAS  PubMed  Google Scholar 

  72. Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD, Shen MR, Brookman KW, Siciliano MJ, Walter CA, Fan W et al (1998) XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1(6):783–793

    Article  CAS  PubMed  Google Scholar 

  73. Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, Swagemakers SM, Kanaar R, Thompson LH, Takeda S (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20(17):6476–6482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, Thompson LH, Takeda S (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21(8):2858–2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. French CA, Masson JY, Griffin CS, O’Regan P, West SC, Thacker J (2002) Role of mammalian RAD51L2 (RAD51C) in recombination and genetic stability. J Biol Chem 277(22):19322–19330

    Article  CAS  PubMed  Google Scholar 

  76. Godthelp BC, Wiegant WW, van Duijn-Goedhart A, Scharer OD, van Buul PP, Kanaar R, Zdzienicka MZ (2002) Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res 30(10):2172–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smiraldo PG, Gruver AM, Osborn JC, Pittman DL (2005) Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Res 65(6):2089–2096

    Article  CAS  PubMed  Google Scholar 

  78. Braybrooke JP, Spink KG, Thacker J, Hickson ID (2000) The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. J Biol Chem 275(37):29100–29106

    Article  CAS  PubMed  Google Scholar 

  79. Schild D, Lio YC, Collins DW, Tsomondo T, Chen DJ (2000) Evidence for simultaneous protein interactions between human Rad51 paralogs. J Biol Chem 275(22):16443–16449

    Article  CAS  PubMed  Google Scholar 

  80. Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ, Benson FE, West SC (2001) Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15(24):3296–3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rajesh C, Gruver AM, Basrur V, Pittman DL (2009) The interaction profile of homologous recombination repair proteins RAD51C, RAD51D and XRCC2 as determined by proteomic analysis. Proteomics 9(16):4071–4086

    Article  CAS  PubMed  Google Scholar 

  82. Yokoyama H, Sarai N, Kagawa W, Enomoto R, Shibata T, Kurumizaka H, Yokoyama S (2004) Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex. Nucleic Acids Res 32(8):2556–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu Y, Masson JY, Shah R, O’Regan P, West SC (2004) RAD51C is required for Holliday junction processing in mammalian cells. Science 303(5655):243–246

    Article  CAS  PubMed  Google Scholar 

  84. Liu Y, Tarsounas M, O’Regan P, West SC (2007) Role of RAD51C and XRCC3 in genetic recombination and DNA repair. J Biol Chem 282(3):1973–1979

    Article  CAS  PubMed  Google Scholar 

  85. Chun J, Buechelmaier ES, Powell SN (2013) Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol 33(2):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kawabata M, Kawabata T, Nishibori M (2005) Role of recA/RAD51 family proteins in mammals. Acta Med Okayama 59(1):1–9

    CAS  PubMed  Google Scholar 

  87. Gruver AM, Miller KA, Rajesh C, Smiraldo PG, Kaliyaperumal S, Balder R, Stiles KM, Albala JS, Pittman DL (2005) The ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C. Mutagenesis 20(6):433–440

    Article  CAS  PubMed  Google Scholar 

  88. Wiese C, Hinz JM, Tebbs RS, Nham PB, Urbin SS, Collins DW, Thompson LH, Schild D (2006) Disparate requirements for the Walker a and B ATPase motifs of human RAD51D in homologous recombination. Nucleic Acids Res 34(9):2833–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420(6913):287–293

    Article  CAS  PubMed  Google Scholar 

  90. Lo T, Pellegrini L, Venkitaraman AR, Blundell TL (2003) Sequence fingerprints in BRCA2 and RAD51: implications for DNA repair and cancer. DNA Repair (Amst) 2(9):1015–1028

    Article  CAS  Google Scholar 

  91. Nomme J, Takizawa Y, Martinez SF, Renodon-Corniere A, Fleury F, Weigel P, Yamamoto K, Kurumizaka H, Takahashi M (2008) Inhibition of filament formation of human Rad51 protein by a small peptide derived from the BRC-motif of the BRCA2 protein. Genes Cells 13(5):471–481

    Article  CAS  PubMed  Google Scholar 

  92. Messick TE, Greenberg RA (2009) The ubiquitin landscape at DNA double-strand breaks. J Cell Biol 187(3):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Al-Hakim A, Escribano-Diaz C, Landry MC, O’Donnell L, Panier S, Szilard RK, Durocher D (2010) The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 9(12):1229–1240

    Article  CAS  Google Scholar 

  94. Pickart CM (2001) Ubiquitin enters the new millennium. Mol Cell 8(3):499–504

    Article  CAS  PubMed  Google Scholar 

  95. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2(3):169–178

    Article  CAS  PubMed  Google Scholar 

  96. Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21(4):301–307

    Article  CAS  PubMed  Google Scholar 

  97. Zheng N, Shabek N (2017) Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86:129–157

    Article  CAS  PubMed  Google Scholar 

  98. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  CAS  PubMed  Google Scholar 

  99. Barlow PN, Luisi B, Milner A, Elliott M, Everett R (1994) Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol 237(2):201–211

    Article  CAS  PubMed  Google Scholar 

  100. Borden KL, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, Solomon E, Freemont PS (1995) The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 14(7):1532–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102(4):533–539

    Article  CAS  PubMed  Google Scholar 

  102. Yamada HY, Gorbsky GJ (2006) Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene 25(9):1330–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Christensen DE, Brzovic PS, Klevit RE (2007) E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 14(10):941–948

    Article  CAS  PubMed  Google Scholar 

  104. Danielsen JM, Sylvestersen KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML (2011) Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10(3):M110.003590

    Article  PubMed  CAS  Google Scholar 

  105. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    Article  CAS  PubMed  Google Scholar 

  106. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1):94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7(5):323–334

    Article  CAS  PubMed  Google Scholar 

  108. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA et al (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134(4):668–678

    Article  CAS  PubMed  Google Scholar 

  109. Yan J, Jetten AM (2008) RAP80 and RNF8, key players in the recruitment of repair proteins to DNA damage sites. Cancer Lett 271(2):179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S (2009) Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J 28(24):3903–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S (2009) Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J 28(16):2461–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243(4898):1576–1583

    Article  CAS  PubMed  Google Scholar 

  113. Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D (2004) Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279(8):7055–7063

    Article  CAS  PubMed  Google Scholar 

  114. Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S, Zhukov AA, Orte A, Klenerman D, Jackson SE, Komander D (2012) Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 492(7428):266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thach TT, Shin D, Han S, Lee S (2016) New conformations of linear polyubiquitin chains from crystallographic and solution-scattering studies expand the conformational space of polyubiquitin. Acta Crystallogr D Struct Biol 72(Pt 4):524–535

    Article  CAS  PubMed  Google Scholar 

  116. Panier S, Durocher D (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8(4):436–443

    Article  CAS  Google Scholar 

  117. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  118. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745

    Article  CAS  PubMed  Google Scholar 

  119. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421(6926):961–966

    Article  CAS  PubMed  Google Scholar 

  120. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123(7):1213–1226

    Article  CAS  PubMed  Google Scholar 

  121. Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, Manis JP, van Deursen J, Nussenzweig A, Paull TT et al (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21(2):187–200

    Article  CAS  PubMed  Google Scholar 

  122. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131(5):901–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM et al (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318(5856):1637–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131(5):887–900

    Article  CAS  PubMed  Google Scholar 

  125. Pinato S, Gatti M, Scandiuzzi C, Confalonieri S, Penengo L (2011) UMI, a novel RNF168 ubiquitin binding domain involved in the DNA damage signaling pathway. Mol Cell Biol 31(1):118–126

    Article  CAS  PubMed  Google Scholar 

  126. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J et al (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136(3):435–446

    Article  CAS  PubMed  Google Scholar 

  127. Pinato S, Scandiuzzi C, Arnaudo N, Citterio E, Gaudino G, Penengo L (2009) RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX. BMC Mol Biol 10:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M et al (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136(3):420–434

    Article  CAS  PubMed  Google Scholar 

  129. Ramadan K, Dikic I (2017) Editorial: ubiquitin and ubiquitin-relative SUMO in DNA damage response. Front Genet 8:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12(1):80–86. sup pp 1–12

    Article  CAS  PubMed  Google Scholar 

  131. Lee TH, Park JM, Leem SH, Kang TH (2014) Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair. Oncogene 33(1):19–25

    Article  CAS  PubMed  Google Scholar 

  132. Scott D, Oldham NJ, Strachan J, Searle MS, Layfield R (2015) Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 15(5–6):844–861

    Article  CAS  PubMed  Google Scholar 

  133. Huang J, Huen MS, Kim H, Leung CC, Glover JN, Yu X, Chen J (2009) RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol 11(5):592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316(5828):1194–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yan J, Kim YS, Yang XP, Li LP, Liao G, Xia F, Jetten AM (2007) The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res 67(14):6647–6656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316(5828):1198–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nikkila J, Coleman KA, Morrissey D, Pylkas K, Erkko H, Messick TE, Karppinen SM, Amelina A, Winqvist R, Greenberg RA (2009) Familial breast cancer screening reveals an alteration in the RAP80 UIM domain that impairs DNA damage response function. Oncogene 28(16):1843–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brzovic PS, Meza JE, King MC, Klevit RE (2001) BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein-protein interactions. J Biol Chem 276(44):41399–41406

    Article  CAS  PubMed  Google Scholar 

  139. Polanowska J, Martin JS, Garcia-Muse T, Petalcorin MI, Boulton SJ (2006) A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J 25(10):2178–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morris JR, Solomon E (2004) BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 13(8):807–817

    Article  CAS  PubMed  Google Scholar 

  141. Gatti M, Pinato S, Maiolica A, Rocchio F, Prato MG, Aebersold R, Penengo L (2015) RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10(2):226–238

    Article  CAS  PubMed  Google Scholar 

  142. Michel MA, Swatek KN, Hospenthal MK, Komander D (2017) Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Mol Cell 68(1):233–246.e235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bennett BT, Knight KL (2005) Cellular localization of human Rad51C and regulation of ubiquitin-mediated proteolysis of Rad51. J Cell Biochem 96(6):1095–1109

    Article  CAS  PubMed  Google Scholar 

  144. Yard BD, Reilly NM, Bedenbaugh MK, Pittman DL (2016) RNF138 interacts with RAD51D and is required for DNA interstrand crosslink repair and maintaining chromosome integrity. DNA Repair (Amst) 42:82–93

    Article  CAS  Google Scholar 

  145. Ismail IH, Gagne JP, Genois MM, Strickfaden H, McDonald D, Xu Z, Poirier GG, Masson JY, Hendzel MJ (2015) The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat Cell Biol 17(11):1446–1457

    Article  CAS  PubMed  Google Scholar 

  146. Schmidt CK, Galanty Y, Sczaniecka-Clift M, Coates J, Jhujh S, Demir M, Cornwell M, Beli P, Jackson SP (2015) Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair. Nat Cell Biol 17(11):1458–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen J, Feng W, Jiang J, Deng Y, Huen MS (2012) Ring finger protein RNF169 antagonizes the ubiquitin-dependent signaling cascade at sites of DNA damage. J Biol Chem 287(33):27715–27722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Poulsen M, Lukas C, Lukas J, Bekker-Jensen S, Mailand N (2012) Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol 197(2):189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. An L, Jiang Y, Ng HH, Man EP, Chen J, Khoo US, Gong Q, Huen MS (2017) Dual-utility NLS drives RNF169-dependent DNA damage responses. Proc Natl Acad Sci U S A 114(14):E2872–e2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu J, Kruswick A, Dang H, Tran AD, Kwon SM, Wang XW, Oberdoerffer P (2017) Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun 8(1):137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Ogrunc M, Martinez-Zamudio RI, Sadoun PB, Dore G, Schwerer H, Pasero P, Lemaitre JM, Dejean A, Bischof O (2016) USP1 regulates cellular senescence by controlling genomic integrity. Cell Rep 15(7):1401–1411

    Article  CAS  PubMed  Google Scholar 

  152. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10(7):634–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12(1):260–271

    Article  CAS  PubMed  Google Scholar 

  156. Somyajit K, Basavaraju S, Scully R, Nagaraju G (2013) ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair. Mol Cell Biol 33(9):1830–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Slupianek A, Jozwiakowski SK, Gurdek E, Skorski T (2009) BCR/ABL kinase interacts with and phosphorylates the RAD51 paralog, RAD51B. Leukemia 23:2308–2310

    Article  CAS  PubMed  Google Scholar 

  158. Takizawa Y, Kinebuchi T, Kagawa W, Yokoyama S, Shibata T, Kurumizaka H (2004) Mutational analyses of the human Rad51-Tyr315 residue, a site for phosphorylation in leukaemia cells. Genes Cells 9(9):781–790

    Article  CAS  PubMed  Google Scholar 

  159. Inano S, Sato K, Katsuki Y, Kobayashi W, Tanaka H, Nakajima K, Nakada S, Miyoshi H, Knies K, Takaori-Kondo A et al (2017) RFWD3-mediated ubiquitination promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Mol Cell 66(5):622–634.e628

    Article  CAS  PubMed  Google Scholar 

  160. Knies K, Inano S, Ramirez MJ, Ishiai M, Surralles J, Takata M, Schindler D (2017) Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J Clin Invest 127(8):3013–3027

    Article  PubMed  PubMed Central  Google Scholar 

  161. Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS et al (2018) Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep 23(1):239–254.e236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Watkins JA, Irshad S, Grigoriadis A, Tutt AN (2014) Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res 16(3):211

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, Thornton A, Norquist BM, Casadei S, Nord AS et al (2014) Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 20(3):764–775

    Article  CAS  PubMed  Google Scholar 

  164. Yard BD, Adams DJ, Chie EK, Tamayo P, Battaglia JS, Gopal P, Rogacki K, Pearson BE, Phillips J, Raymond DP et al (2016) A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun 7:11428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vanderstichele A, Busschaert P, Olbrecht S, Lambrechts D, Vergote I (2017) Genomic signatures as predictive biomarkers of homologous recombination deficiency in ovarian cancer. Eur J Cancer 86:5–14

    Article  CAS  PubMed  Google Scholar 

  166. Hillman RT, Chisholm GB, Lu KH, Futreal PA (2018) Genomic rearrangement signatures and clinical outcomes in high-grade serous ovarian cancer. J Natl Cancer Inst 110(3):265–272

    Article  CAS  Google Scholar 

  167. Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, Szallasi Z, Barry WT, Winer EP, Tung NM et al (2016) Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22(15):3764–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lheureux S, Lai Z, Dougherty BA, Runswick S, Hodgson DR, Timms KM, Lanchbury JS, Kaye S, Gourley C, Bowtell D et al (2017) Long-term responders on olaparib maintenance in high-grade serous ovarian cancer: clinical and molecular characterization. Clin Cancer Res 23(15):4086–4094

    Article  CAS  PubMed  Google Scholar 

  169. Zou X, Owusu M, Harris R, Jackson SP, Loizou JI, Nik-Zainal S (2018) Validating the concept of mutational signatures with isogenic cell models. Nat Commun 9(1):1744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J, Zou X, Ramakrishna M, Martin S, Boyault S, Sieuwerts AM et al (2017) HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med 23(4):517–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Nik-Zainal S, Morganella S (2017) Mutational signatures in breast cancer: the problem at the DNA level. Clin Cancer Res 23:2617–2629

    Article  PubMed  PubMed Central  Google Scholar 

  172. Chien J, Sicotte H, Fan JB, Humphray S, Cunningham JM, Kalli KR, Oberg AL, Hart SN, Li Y, Davila JI et al (2015) TP53 mutations, tetraploidy and homologous recombination repair defects in early stage high-grade serous ovarian cancer. Nucleic Acids Res 43(14):6945–6958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lim DS, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16(12):7133–7143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shu Z, Smith S, Wang L, Rice MC, Kmiec EB (1999) Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53(−/−) background. Mol Cell Biol 19(12):8686–8693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kuznetsov SG, Haines DC, Martin BK, Sharan SK (2009) Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice. Cancer Res 69(3):863–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pittman DL, Schimenti JC (2000) Midgestation lethality in mice deficient for the RecA-related gene, Rad51d/Rad51l3. Genesis 26(3):167–173

    Article  CAS  PubMed  Google Scholar 

  177. Adam J, Deans B, Thacker J (2007) A role for Xrcc2 in the early stages of mouse development. DNA Repair 6(2):224–234

    Article  CAS  PubMed  Google Scholar 

  178. Peng G, Chun-Jen Lin C, Mo W, Dai H, Park YY, Kim SM, Peng Y, Mo Q, Siwko S, Hu R et al (2014) Genome-wide transcriptome profiling of homologous recombination DNA repair. Nat Commun 5:3361

    Article  PubMed  CAS  Google Scholar 

  179. Lord CJ, Ashworth A (2013) Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19(11):1381–1388

    Article  CAS  PubMed  Google Scholar 

  180. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, Konecny GE, Coleman RL, Tinker AV, O’Malley DM et al (2017) Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18(1):75–87

    Article  CAS  PubMed  Google Scholar 

  181. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, Karlan BY, Taniguchi T, Swisher EM (2011) Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol 29(22):3008–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, Kuiper MJ, Ho GY, Barker H, Jasin M et al (2017) Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov 7(9):984–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q et al (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17(6):688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hu HM, Zhao X, Kaushik S, Robillard L, Barthelet A, Lin KK, Shah KN, Simmons AD, Raponi M, Harding TC et al (2018) A quantitative chemotherapy genetic interaction map reveals factors associated with PARP inhibitor resistance. Cell Rep 23(3):918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang X, Nagl NG Jr, Flowers S, Zweitzig D, Dallas PB, Moran E (2004) Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer 112(4):636

    Article  CAS  PubMed  Google Scholar 

  186. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, Kapoor P, Ju Z, Mo Q, Shih Ie M et al (2015) ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov 5(7):752–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shen J, Ju Z, Zhao W, Wang L, Peng Y, Ge Z, Nagel ZD, Zou J, Wang C, Kapoor P et al (2018) ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med 24(5):556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Germano G, Lamba S, Rospo G, Barault L, Magri A, Maione F, Russo M, Crisafulli G, Bartolini A, Lerda G et al (2017) Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552(7683):116–120

    Article  CAS  PubMed  Google Scholar 

  190. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, Rizvi NA, Merghoub T, Levine AJ, Chan TA et al (2017) A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551(7681):517–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, Chowdhury D, Wu CJ, D’Andrea AD et al (2016) Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7(12):13587–13598

    Article  PubMed  PubMed Central  Google Scholar 

  194. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355(6322):eaaf8399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Kelderman S, Schumacher TN, Kvistborg P (2015) Mismatch repair-deficient cancers are targets for anti-PD-1 therapy. Cancer Cell 28(1):11–13

    Article  CAS  PubMed  Google Scholar 

  197. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372(26):2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Michael Wyatt, Janay Clytus, and Jason Stewart for insightful comments and suggestions during the writing of this review. The work related to the topic of this chapter was supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health Award Number R15 GM110615 and the American Cancer Society (RSG-03-158-01-GMC). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional support was provided to NMR from a SPARC Graduate Research Grant from the Office of the Vice President for Research at the University of South Carolina and from an Associazione Italiana per la Ricerca sul Cancro “Molini Bongiovanni” Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Pittman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reilly, N.M., Yard, B.D., Pittman, D.L. (2019). Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. In: Balakrishnan, L., Stewart, J. (eds) DNA Repair. Methods in Molecular Biology, vol 1999. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9500-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9500-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9499-1

  • Online ISBN: 978-1-4939-9500-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics