Skip to main content

Strategies for Global RNA Sequencing of the Human Pathogen Neisseria gonorrhoeae

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1997))

Abstract

Over the last several years transcriptomic analysis of bacterial pathogens has become easier and less expensive. This technique is used to determine expression levels for all genes of a particular species or collection of species under a given condition, including genes that are not yet known to exist. While transcriptomics can be a powerful tool to better understand bacterial regulatory responses to specific host environments, the experimental approach and data analysis must be performed correctly to ensure robust, accurate, and translational results. Here, we describe experimental protocols related to transcriptomic analysis of the sexually transmitted disease pathogen Neisseria gonorrhoeae. Methods are described for the extraction of high-quality RNA, examination of RNA to ensure quality, the generation of cDNA libraries for sequencing and the downstream analysis of raw sequencing data to determine gene expression levels. Much of this work can be carried out with equipment and reagents that are readily available, and the methods can be performed by a majority of laboratory groups. RNA-seq and transcriptomic analyses are set to become even more common in the coming years. The protocols described here will provide a standardized set of methods for applying this powerful technique to the study of N. gonorrhoeae under a variety of conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Daou N, Yu C, McClure R et al (2013) Neisseria prophage repressor implicated in gonococcal pathogenesis. Infect Immun 81(10):3652–3661. https://doi.org/10.1128/iai.00298-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Isabella VM, Clark VL (2011) Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 12:51. https://doi.org/10.1186/1471-2164-12-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson LA, Day M, Allen J et al (2017) Iron-regulated small RNA expression as Neisseria gonorrhoeae FA 1090 transitions into stationary phase growth. BMC Genomics 18(1):317. https://doi.org/10.1186/s12864-017-3684-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McClure R, Balasubramanian D, Sun Y et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41(14):e140. https://doi.org/10.1093/nar/gkt444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McClure R, Nudel K, Massari P et al (2015) The gonococcal transcriptome during infection of the lower genital tract in women. PLoS One 10(8):e0133982. https://doi.org/10.1371/journal.pone.0133982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McClure R, Tjaden B, Genco C (2014) Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol 5:456. https://doi.org/10.3389/fmicb.2014.00456

    Article  PubMed  PubMed Central  Google Scholar 

  7. Remmele CW, Xian Y, Albrecht M et al (2014) Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res 42(16):10579–10595. https://doi.org/10.1093/nar/gku762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts SB, Spencer-Smith R, Shah M et al (2016) Correia repeat enclosed elements and non-coding RNAs in the Neisseria species. Microorganisms 4(3). https://doi.org/10.3390/microorganisms4030031

  9. Wachter J, Hill SA (2015) Small transcriptome analysis indicates that the enzyme RppH influences both the quality and quantity of sRNAs in Neisseria gonorrhoeae. FEMS Microbiol Lett 362(4). https://doi.org/10.1093/femsle/fnu059

  10. Yu C, McClure R, Nudel K et al (2016) Characterization of the Neisseria gonorrhoeae iron and fur regulatory network. J Bacteriol 198(16):2180–2191. https://doi.org/10.1128/jb.00166-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  13. Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. https://doi.org/10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  14. Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341. https://doi.org/10.1186/1471-2164-13-341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salipante SJ, Kawashima T, Rosenthal C et al (2014) Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol 80(24):7583–7591. https://doi.org/10.1128/aem.02206-14

    Article  PubMed  PubMed Central  Google Scholar 

  16. David M, Dzamba M, Lister D et al (2011) SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 27(7):1011–1012. https://doi.org/10.1093/bioinformatics/btr046

    Article  CAS  PubMed  Google Scholar 

  17. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  20. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li P, Piao Y, Shon HS et al (2015) Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics 16:347. https://doi.org/10.1186/s12859-015-0778-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zyprych-Walczak J, Szabelska A, Handschuh L et al (2015) The impact of normalization methods on RNA-seq data analysis. Biomed Res Int 2015:621690. https://doi.org/10.1155/2015/621690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. Ana Paula Lourenco and Phillip Balzano for their helpful contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McClure, R., Genco, C.A. (2019). Strategies for Global RNA Sequencing of the Human Pathogen Neisseria gonorrhoeae. In: Christodoulides, M. (eds) Neisseria gonorrhoeae. Methods in Molecular Biology, vol 1997. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9496-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9496-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9495-3

  • Online ISBN: 978-1-4939-9496-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics