Skip to main content

Studying the Spatial Organization of ESCRTs in Cytokinetic Abscission Using the High-Resolution Imaging Techniques SIM and Cryo-SXT

  • Protocol
  • First Online:
The ESCRT Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1998))

Abstract

The ESCRT machinery mediates scission of the intercellular bridge that connects two daughter cells at the end of cytokinesis. Structured illumination microscopy (SIM) and cryo-soft-X-ray tomography (cryo-SXT) have been used in recent years to study the topology of ESCRT-driven cytokinetic abscission. These studies revealed that the intercellular bridge is occupied by cortical rings and spiral-like filaments and that ESCRTs form ring-like structures in this region during abscission. In this chapter, we provide two protocols: a protocol for determining the spatial organization of specific ESCRT components at the intercellular bridge using SIM and a protocol for resolving the ultrastructural organization of cortical filaments at the intercellular bridge using cryo-SXT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci U S A 108(12):4846–4851. https://doi.org/10.1073/pnas.1102714108

    Article  PubMed  PubMed Central  Google Scholar 

  2. Elia N, Ott C, Lippincott-Schwartz J (2013) Incisive imaging and computation for cellular mysteries: lessons from abscission. Cell 155(6):1220–1231. https://doi.org/10.1016/j.cell.2013.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mierzwa BE, Chiaruttini N, Redondo-Morata L, Moser von Filseck J, Konig J, Larios J, Poser I, Muller-Reichert T, Scheuring S, Roux A, Gerlich DW (2017) Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat Cell Biol 19(7):787–798. https://doi.org/10.1038/ncb3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I, Leonhardt H, Muller-Reichert T, Gerlich DW (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331(6024):1616–1620. https://doi.org/10.1126/science.1201847

    Article  CAS  PubMed  Google Scholar 

  5. Van Engelenburg SB, Shtengel G, Sengupta P, Waki K, Jarnik M, Ablan SD, Freed EO, Hess HF, Lippincott-Schwartz J (2014) Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343(6171):653–656. https://doi.org/10.1126/science.1247786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goliand I, Nachmias D, Gershony O, Elia N (2014) Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol Biol Cell 25(23):3740–3748. https://doi.org/10.1091/mbc.E14-08-1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elia N, Fabrikant G, Kozlov M, Lippincott-Schwartz J (2012) Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling. Biophys J 102:2309–2320

    Article  CAS  Google Scholar 

  8. Heintzmann R, Cremer CG (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568(1):185–196

    Article  Google Scholar 

  9. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  CAS  Google Scholar 

  10. Schneider G, Guttmann P, Heim S, Rehbein S, Mueller F, Nagashima K, Heymann JB, Muller WG, McNally JG (2010) Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat Methods 7(12):985–987. https://doi.org/10.1038/nmeth.1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Do M, Isaacson SA, McDermott G, Le Gros MA, Larabell CA (2015) Imaging and characterizing cells using tomography. Arch Biochem Biophys 581:111–121. https://doi.org/10.1016/j.abb.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hagen C, Guttmann P, Klupp B, Werner S, Rehbein S, Mettenleiter TC, Schneider G, Grunewald K (2012) Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells. J Struct Biol 177(2):193–201. https://doi.org/10.1016/j.jsb.2011.12.012

    Article  PubMed  PubMed Central  Google Scholar 

  13. Elad N, Abramovitch S, Sabanay H, Medalia O (2011) Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography. J Cell Sci 124(Pt 2):207–215. https://doi.org/10.1242/jcs.073486

    Article  CAS  PubMed  Google Scholar 

  14. Sherman S, Kirchenbuechler D, Nachmias D, Tamir A, Werner S, Elbaum M, Elia N (2016) Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography. Sci Rep 6:27629. https://doi.org/10.1038/srep27629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varsano N, Dadosh T, Kapishnikov S, Pereiro E, Shimoni E, Jin X, Kruth HS, Leiserowitz L, Addadi L (2016) Development of correlative cryo-soft X-ray tomography and stochastic reconstruction microscopy. A study of cholesterol crystal early formation in cells. J Am Chem Soc 138(45):14931–14940. https://doi.org/10.1021/jacs.6b07584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gershony O, Sherman S, Adar S, Segal I, Nachmias D, Goliand I, Elia N (2017) Measuring abscission spatiotemporal dynamics using quantitative high-resolution microscopy. Methods Cell Biol 137:205–224. https://doi.org/10.1016/bs.mcb.2016.03.032

    Article  CAS  PubMed  Google Scholar 

  17. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116(1):71–76. https://doi.org/10.1006/jsbi.1996.0013

    Article  CAS  PubMed  Google Scholar 

  18. Heymann JB, Belnap DM (2007) Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157(1):3–18. https://doi.org/10.1016/j.jsb.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  19. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  20. Agulleiro JI, Fernandez JJ (2011) Fast tomographic reconstruction on multicore computers. Bioinformatics 27(4):582–583. https://doi.org/10.1093/bioinformatics/btq692

    Article  CAS  PubMed  Google Scholar 

  21. Messaoudii C, Boudier T, Sanchez Sorzano CO, Marco S (2007) TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8:288. https://doi.org/10.1186/1471-2105-8-288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorzano CO, Messaoudi C, Eibauer M, Bilbao-Castro JR, Hegerl R, Nickell S, Marco S, Carazo JM (2009) Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics 10:124. https://doi.org/10.1186/1471-2105-10-124

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the all members of our laboratory and especially Dr. Dikla Nachmias for contributing technical tips. We acknowledge the Helmholtz-Zentrum Berlin–electron storage ring BESSY II for the allocation of synchrotron radiation beamtime at beamline U41-FSGM. This work is funded in part by the Instruct R&D pilot award for integrating biology, the Israeli Science Foundation (ISF) grant no. 455/13 (to N.E.) and 1285/14 (to M.E.), and the Marie Curie Integration Grant (CIG) (to N.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Elia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adar-Levor, S., Goliand, I., Elbaum, M., Elia, N. (2019). Studying the Spatial Organization of ESCRTs in Cytokinetic Abscission Using the High-Resolution Imaging Techniques SIM and Cryo-SXT. In: Culetto, E., Legouis, R. (eds) The ESCRT Complexes. Methods in Molecular Biology, vol 1998. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9492-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9492-2_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9491-5

  • Online ISBN: 978-1-4939-9492-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics