Skip to main content

Metabolomics Analyses from Tissues in Parkinson’s Disease

  • Protocol
  • First Online:
Book cover Metabolomics

Abstract

Metabolomics has been successfully applied to study neurological and neurodegenerative disorders including Parkinson’s disease for (1) the identification of potential biomarkers of onset and disease progression; (2) the identification of novel mechanisms of disease progression; and (3) the assessment of treatment prognosis and outcome. Reproducible and efficient extraction of metabolites is imperative to the success of any metabolomics investigation. Unlike other omics techniques, the composition of the metabolome can be negatively impacted by the preparation, processing, and handling of these samples. The proper choice of data collection, preprocessing, and processing protocols is similarly important to the design of an effective metabolomics experiment. Likewise, the correct application of univariate and multivariate statistical methods is essential for providing biologically relevant insights. In this chapter, we have outlined a detailed metabolomics workflow that addresses all of these issues. A step-by-step protocol from the preparation of neuronal cells and metabolomic tissue samples to their metabolic analyses using nuclear magnetic resonance, mass spectrometry, and chemometrics is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardner SG, Marshall DD, Daum RS, Powers R, Somerville GA (2018) Metabolic mitigation of staphylococcus aureus vancomycin intermediate-level susceptibility. Antimicrob Agents Chemother 62(1). https://doi.org/10.1128/AAC.01608-17

  2. Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R (2017) Metabolic dysfunction in Parkinson's disease: bioenergetics, redox homeostasis and central carbon metabolism. Brain Res Bull 133:12–30. https://doi.org/10.1016/j.brainresbull.2017.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36(11):1474–1492. https://doi.org/10.15252/embj.201695810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Powers R, Lei S, Anandhan A, Marshall DD, Worley B, Cerny RL, Dodds ED, Huang Y, Panayiotidis MI, Pappa A, Franco R (2017) Metabolic investigations of the molecular mechanisms associated with parkinson's disease. Meta 7(2). https://doi.org/10.3390/metabo7020022

    Article  Google Scholar 

  5. Gebregiworgis T, Powers R (2012) Application of NMR metabolomics to search for human disease biomarkers. Comb Chem High Throughput Screen 15(8):595–610

    Article  CAS  Google Scholar 

  6. Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ, Barletta RG, Somerville GA, Powers R (2013) Revisiting protocols for the NMR analysis of bacterial metabolomes. J Integr OMICS 3(2):120–137. https://doi.org/10.5584/jiomics.v3i2.139

    Article  PubMed  PubMed Central  Google Scholar 

  7. Powers R (2014) The current state of drug discovery and a potential role for NMR metabolomics. J Med Chem 57(14):5860–5870. https://doi.org/10.1021/jm401803b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Botas A, Campbell HM, Han X, Maletic-Savatic M (2015) Metabolomics of neurodegenerative diseases. Int Rev Neurobiol 122:53–80. https://doi.org/10.1016/bs.irn.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  9. Han W, Sapkota S, Camicioli R, Dixon RA, Li L (2017) Profiling novel metabolic biomarkers for Parkinson's disease using in-depth metabolomic analysis. Mov Disord 32(12):1720–1728. https://doi.org/10.1002/mds.27173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luan H, Liu LF, Tang Z, Zhang M, Chua KK, Song JX, Mok VC, Li M, Cai Z (2015) Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson's disease. Sci Rep 5:13888. https://doi.org/10.1038/srep13888

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roede JR, Uppal K, Park Y, Lee K, Tran V, Walker D, Strobel FH, Rhodes SL, Ritz B, Jones DP (2013) Serum metabolomics of slow vs. rapid motor progression Parkinson's disease: a pilot study. PLoS One 8(10):e77629. https://doi.org/10.1371/journal.pone.0077629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poliquin PO, Chen J, Cloutier M, Trudeau LE, Jolicoeur M (2013) Metabolomics and in-silico analysis reveal critical energy deregulations in animal models of Parkinson's disease. PLoS One 8(7):e69146. https://doi.org/10.1371/journal.pone.0069146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen X, Xie C, Sun L, Ding J, Cai H (2015) Longitudinal metabolomics profiling of parkinson's disease-related alpha-synuclein A53T transgenic mice. PLoS One 10(8):e0136612. https://doi.org/10.1371/journal.pone.0136612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lewitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L, Arizona Parkinson's Disease C (2013) 3-hydroxykynurenine and other Parkinson's disease biomarkers discovered by metabolomic analysis. Mov Disord 28(12):1653–1660. https://doi.org/10.1002/mds.25555

    Article  CAS  PubMed  Google Scholar 

  15. Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R (2014) Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 9(9):2032–2048. https://doi.org/10.1021/cb400894a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Havelund JF, Andersen AD, Binzer M, Blaabjerg M, Heegaard NHH, Stenager E, Faergeman NJ, Gramsbergen JB (2017) Changes in kynurenine pathway metabolism in Parkinson patients with L-DOPA-induced dyskinesia. J Neurochem 142(5):756–766. https://doi.org/10.1111/jnc.14104

    Article  CAS  PubMed  Google Scholar 

  17. Breier M, Wahl S, Prehn C, Fugmann M, Ferrari U, Weise M, Banning F, Seissler J, Grallert H, Adamski J, Lechner A (2014) Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One 9(2):e89728. https://doi.org/10.1371/journal.pone.0089728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabolomics 1(1):92–107. https://doi.org/10.2174/2213235X11301010092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dettmer K, Aronov Pavel A, Hammock Bruce D (2006) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78. https://doi.org/10.1002/mas.20108

    Article  CAS  Google Scholar 

  20. Nicholson JK, Lindon JC, Holmes E (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189. https://doi.org/10.1080/004982599238047

    Article  CAS  Google Scholar 

  21. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  Google Scholar 

  22. Bras J, Guerreiro R, Hardy J (2015) SnapShot: genetics of parkinson's disease. Cell 160(3):570–570 e571. https://doi.org/10.1016/j.cell.2015.01.019

    Article  CAS  PubMed  Google Scholar 

  23. Worley B, Powers R (2014) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9(5):1138–1144. https://doi.org/10.1021/cb4008937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Worley B, Halouska S, Powers R (2013) Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal Biochem 433(2):102–104. https://doi.org/10.1016/j.ab.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  25. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  Google Scholar 

  26. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. In: Downing AK (ed) Protein NMR techniques. Humana Press, Totowa, NJ, pp 313–352. https://doi.org/10.1385/1-59259-809-9:313

    Chapter  Google Scholar 

  27. Blesa J, Przedborski S (2014) Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155. https://doi.org/10.3389/fnana.2014.00155

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11(1):395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res 43(W1):W251–W257. https://doi.org/10.1093/nar/gkv380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87(11):1123–1124. https://doi.org/10.1021/ed100697w

    Article  CAS  Google Scholar 

  31. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res 41(D1):D801–D807. https://doi.org/10.1093/nar/gks1065

    Article  CAS  PubMed  Google Scholar 

  32. Markley JL, Anderson ME, Cui Q, Eghbalnia HR, Lewis IA, Hegeman AD, Li J, Schulte CF, Sussman MR, Westler WM, Ulrich EL, Zolnai Z (2007) New bioinformatics resources for metabolomics. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 157–168. https://doi.org/10.1142/9789812772435_0016

    Book  Google Scholar 

  33. Worley B, Powers R (2015) Deterministic multidimensional nonuniform gap sampling. J Magn Reson 261:19–26. https://doi.org/10.1016/j.jmr.2015.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klein C, Westenberger A (2012) Genetics of Parkinson's disease. Cold Spring Harb Perspect Med 2(1):a008888. https://doi.org/10.1101/cshperspect.a008888

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goldman SM (2014) Environmental toxins and Parkinson's disease. Annu Rev Pharmacol Toxicol 54:141–164. https://doi.org/10.1146/annurev-pharmtox-011613-135937

    Article  CAS  PubMed  Google Scholar 

  36. Cannon JR, Greenamyre JT (2013) Gene-environment interactions in Parkinson's disease: specific evidence in humans and mammalian models. Neurobiol Dis 57:38–46. https://doi.org/10.1016/j.nbd.2012.06.025

    Article  CAS  PubMed  Google Scholar 

  37. Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI (2010) Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson's disease. Chem Biol Interact 188(2):289–300. https://doi.org/10.1016/j.cbi.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Falkenburger BH, Saridaki T, Dinter E (2016) Cellular models for Parkinson's disease. J Neurochem 139(Suppl 1):121–130. https://doi.org/10.1111/jnc.13618

    Article  CAS  PubMed  Google Scholar 

  39. Creed RB, Goldberg MS (2018) New developments in genetic rat models of parkinson's disease. Mov Disord 33(5):717–729. https://doi.org/10.1002/mds.27296

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE (2012) Inflammation and adaptive immunity in Parkinson's disease. Cold Spring Harb Perspect Med 2(1):a009381. https://doi.org/10.1101/cshperspect.a009381

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  42. Anandhan A, Lei S, Levytskyy R, Pappa A, Panayiotidis MI, Cerny RL, Khalimonchuk O, Powers R, Franco R (2017) Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (alpha-Synuclein)-environment (paraquat) interactions. Mol Neurobiol 54(5):3825–3842. https://doi.org/10.1007/s12035-016-9906-2

    Article  CAS  PubMed  Google Scholar 

  43. Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, Lovell-Badge R, Masters JR, Meredith J, Stacey GN, Thraves P, Vias M, Cancer Research UK (2014) Guidelines for the use of cell lines in biomedical research. Br J Cancer 111(6):1021–1046. https://doi.org/10.1038/bjc.2014.166

    Article  PubMed  PubMed Central  Google Scholar 

  44. Westerhoff HV, Chen YD (1984) How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. Eur J Biochem 142(2):425–430

    Article  CAS  Google Scholar 

  45. Siegel MM (1981) The use of the modified simplex method for automatic phase correction in fourier-transform nuclear magnetic resonance spectroscopy. Anal Chim Acta 133(1):103–108. https://doi.org/10.1016/S0003-2670(00)00089-1

    Article  CAS  Google Scholar 

  46. Marshall DD, Lei S, Worley B, Huang Y, Garcia-Garcia A, Franco R, Dodds ED, Powers R (2015) Combining DI-ESI–MS and NMR datasets for metabolic profiling. Metabolomics 11(2):391–402. https://doi.org/10.1007/s11306-014-0704-4

    Article  CAS  PubMed  Google Scholar 

  47. Worley B, Powers R (2014) Simultaneous phase and scatter correction for NMR datasets. Chemom Intell Lab Syst 131:1–6. https://doi.org/10.1016/j.chemolab.2013.11.005

    Article  CAS  Google Scholar 

  48. Savorani F, Tomasi G, Engelsen SB (2010) icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 202(2):190–202. https://doi.org/10.1016/j.jmr.2009.11.012

    Article  CAS  Google Scholar 

  49. De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W (2008) NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal Chem 80(10):3783–3790. https://doi.org/10.1021/ac7025964

    Article  CAS  PubMed  Google Scholar 

  50. Development Core Team R (2011) R: A language and environment for statistical computing, vol 1. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  51. Eriksson L, Trygg J, Wold S (2008) CV-ANOVA for significance testing of PLS and OPLS® models. J Chemom 22(11–12):594–600. https://doi.org/10.1002/cem.1187

    Article  CAS  Google Scholar 

  52. Triba MN, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon P, Rutledge DN, Savarin P (2015) PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol BioSyst 11(1):13–19. https://doi.org/10.1039/c4mb00414k

    Article  CAS  PubMed  Google Scholar 

  53. Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, Bessant C, Connor S, Capuani G, Craig A, Ebbels T, Kell DB, Manetti C, Newton J, Paternostro G, Somorjai R, Sjöström M, Trygg J, Wulfert F (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3(3):231–241. https://doi.org/10.1007/s11306-007-0081-3

    Article  CAS  Google Scholar 

  54. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57(1):289–300

    Google Scholar 

  55. Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310(6973):170

    Article  CAS  Google Scholar 

  56. Xu Q-S, Liang Y-Z (2001) Monte Carlo cross validation. Chemom Intell Lab Syst 56(1):1–11. https://doi.org/10.1016/S0169-7439(00)00122-2

    Article  CAS  Google Scholar 

  57. Rubinson KA (2017) Practical corrections for p(H,D) measurements in mixed H2O/D2O biological buffers. Anal Methods 9(18):2744–2750. https://doi.org/10.1039/C7AY00669A

    Article  CAS  Google Scholar 

  58. Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behav Ecol 17(4):688–690. https://doi.org/10.1093/beheco/ark016

    Article  Google Scholar 

  59. Fay MP, Proschan MA (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Sur 4:1–39. https://doi.org/10.1214/09-SS051

    Article  Google Scholar 

  60. Hotelling H (1931) The economics of exhaustible resources. J Polit Econ 39(2):137–175

    Article  Google Scholar 

  61. Fay DS, Gerow K (2013) A biologist's guide to statistical thinking and analysis. WormBook:1–54. https://doi.org/10.1895/wormbook.1.159.1

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Number 1660921. This work was supported in part by funding from the Redox Biology Center (P30 GM103335, NIGMS) and the Nebraska Center for Integrated Biomolecular Communication (P20 GM113126, NIGMS). The research was performed in facilities renovated with support from the National Institutes of Health (RR015468-01). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodrigo Franco or Robert Powers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhinderwala, F. et al. (2019). Metabolomics Analyses from Tissues in Parkinson’s Disease. In: Bhattacharya, S. (eds) Metabolomics. Methods in Molecular Biology, vol 1996. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9488-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9488-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9487-8

  • Online ISBN: 978-1-4939-9488-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics