Skip to main content

Labeling Cancer Stem Cells with 13C6 Glucose and 13C5 Glutamine for Metabolic Flux Analysis

  • Protocol
  • First Online:
Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1996))

  • 2154 Accesses

Abstract

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) are a population of cells present within tumor that have increased self-renewal, chemoresistance, and aggressiveness, thereby contributing to tumor relapse. Literature shows that CSCs or TICs typically originate within the hypoxic niches of the tumor, making hypoxia one of the driving factors for generation of this population. Hypoxic stress promotes adaptation to low oxygen tension in the tissues by altering metabolic properties of the CSCs. This leads to a number of altered enzymatic activities in the CSC population that further contribute to the survival of the CSCs leading to resistance to standard therapy. Hence, understanding this altered metabolic pathways as well as targeting key nodes in these may pave the way for cancer management.

Glucose and glutamine are the major substrates utilized by cancer cells and feed into multiple biosynthetic pathways. Hence, labeling and tracking these compounds may reveal some novel metabolic pathways exploited by cancer stem cells to acquire survival advantage. In these current book chapters, we elaborately summarized the basic steps required for isolation, characterization, and metabolic labeling (13C6 glucose and 13C5 glutamine) of CSC for flux analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar-Gallardo C, Simon C (2013) Cells, stem cells, and cancer stem cells. Semin Reprod Med 31(1):5–13

    Article  CAS  Google Scholar 

  2. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells–what challenges do they pose? Nat Rev Drug Discov 13(7):497–512

    Article  CAS  Google Scholar 

  3. Brooks MD et al (2015) Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell 17(3):260–271

    Article  CAS  Google Scholar 

  4. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23(43):7274–7282

    Article  CAS  Google Scholar 

  5. Balic A et al (2011) Stem cells as the root of pancreatic ductal adenocarcinoma. Exp Cell Res 318(6):691–704

    Article  Google Scholar 

  6. Bhagwandin VJ et al (2016) The metastatic potential and chemoresistance of human pancreatic cancer stem cells. PLoS One 11(2):e0148807

    Article  Google Scholar 

  7. Bhagwandin VJ, Shay JW (2009) Pancreatic cancer stem cells: fact or fiction? Biochim Biophys Acta 1792(4):248–259

    Article  CAS  Google Scholar 

  8. Cho RW, Clarke MF (2008) Recent advances in cancer stem cells. Curr Opin Genet Dev 18(1):48–53

    Article  CAS  Google Scholar 

  9. Banerjee S et al (2014) CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide. Clin Cancer Res 20(9):2388–2399

    Article  CAS  Google Scholar 

  10. Bellizzi A et al (2013) Co-expression of CD133(+)/CD44(+) in human colon cancer and liver metastasis. J Cell Physiol 228(2):408–415

    Article  CAS  Google Scholar 

  11. Hong SP et al (2009) CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer 125(10):2323–2331

    Article  CAS  Google Scholar 

  12. Chiou SH et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14(13):4085–4095

    Article  CAS  Google Scholar 

  13. Li C et al (2009) Identification of human pancreatic cancer stem cells. Methods Mol Biol 568(Journal Article):161–173

    Article  CAS  Google Scholar 

  14. Li C et al (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141(6):2218–2227.e2215

    Article  CAS  Google Scholar 

  15. Liang D, Shi Y (2012) Aldehyde dehydrogenase-1 is a specific marker for stem cells in human lung adenocarcinoma. Med Oncol 29(2):633–639

    Article  CAS  Google Scholar 

  16. Nomura A et al (2016) Microenvironment mediated alterations to metabolic pathways confer increased chemo-resistance in CD133+ tumor initiating cells. Oncotarget 7(35):56324–56337

    Article  Google Scholar 

  17. Liu PP et al (2014) Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death Differ 21(1):124–135

    Article  Google Scholar 

  18. Ciavardelli D et al (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis 5:e1336

    Article  CAS  Google Scholar 

  19. Dando I et al (2015) The metabolic landscape of cancer stem cells. IUBMB Life 67(9):687–693

    Article  CAS  Google Scholar 

  20. Emmink BL et al (2013) The secretome of colon cancer stem cells contains drug-metabolizing enzymes. J Proteome 91:84–96

    Article  CAS  Google Scholar 

  21. Liao J et al (2014) Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One 9(1):e84941

    Article  Google Scholar 

  22. Palorini R et al (2014) Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS. J Cell Biochem 115(2):368–379

    Article  CAS  Google Scholar 

  23. Zhou Y et al (2011) Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis. J Biol Chem 286(37):32843–32853

    Article  CAS  Google Scholar 

  24. De Luca A et al (2015) Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6(17):14777–14795

    PubMed  PubMed Central  Google Scholar 

  25. Vlashi E et al (2011) Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 108(38):16062–16067

    Article  CAS  Google Scholar 

  26. Wu D, Yotnda P (2011) Induction and testing of hypoxia in cell culture. J Vis Exp 54:2899

    Google Scholar 

  27. Winder CL et al (2011) TARDIS-based microbial metabolomics: time and relative differences in systems. Trends Microbiol 19(7):315–322

    Article  CAS  Google Scholar 

  28. de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204(1):118–123

    Article  Google Scholar 

  29. Villas-Boas SG et al (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22(14):1155–1169

    Article  CAS  Google Scholar 

  30. Fiehn O (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171

    Article  CAS  Google Scholar 

  31. Villas-Boas SG, Bruheim P (2007) Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal Biochem 370(1):87–97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulagna Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kesh, K., Banerjee, S. (2019). Labeling Cancer Stem Cells with 13C6 Glucose and 13C5 Glutamine for Metabolic Flux Analysis. In: Bhattacharya, S. (eds) Metabolomics. Methods in Molecular Biology, vol 1996. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9488-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9488-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9487-8

  • Online ISBN: 978-1-4939-9488-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics