Skip to main content
Book cover

Metabolomics pp 161–178Cite as

Assays for Intracellular Cyclic Adenosine Monophosphate (cAMP) and Lysosomal Acidification

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1996))

Abstract

Cyclic adenosine monophosphate (3′,5′-cAMP) is a multifunctional second messenger which controls extremely diverse and physiologically important biochemical pathways. Among its myriad roles, 3′,5′-cAMP functions as an intracellular regulator of lysosomal pH, which is essential for the activity of acidic lysosomal enzymes. Defects in lysosomal acidification are attributed to many diseases like macular degeneration, Parkinson’s, Alzheimer’s, and cystic fibrosis. Strategic re-acidification of defective lysosomes by pharmacological increase of intracellular cAMP offers exciting therapeutic potential in these diseases. Modular assays for accurate assessment of intracellular cAMP and lysosomal pH are a critical component of this research. We describe label-free targeted metabolomics for quantitating intracellular cAMP and integrated assays for measuring lysosomal pH. These hybrid assays offer fast, unbiased information on intracellular cAMP concentrations and lysosomal pH that can be applied to many cell types and putative drug screening strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Daniel PB, Walker WH, Habener JF (1998) Cyclic amp signaling and gene regulation. Annu Rev Nutr 18:353–383

    Article  CAS  Google Scholar 

  2. Robinson G, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174

    Article  Google Scholar 

  3. Jackson EK (2017) Discovery and roles of 2′,3'-cAMP in biological systems. Handb Exp Pharmacol 238:229–252

    Article  CAS  Google Scholar 

  4. Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476:33–42

    Article  CAS  Google Scholar 

  5. Paunescu TG, Ljubojevic M, Russo LM et al (2010) cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol Renal Physiol 298:F643–F654

    Article  CAS  Google Scholar 

  6. Ballabio A (2016) The awesome lysosome. EMBO Mol Med 8:73–76

    Article  CAS  Google Scholar 

  7. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    Article  CAS  Google Scholar 

  8. Swanson J (2006) CFTR: helping to acidify macrophage lysosomes. Nat Cell Biol 8:908–909

    Article  CAS  Google Scholar 

  9. Di A, Brown ME, Deriy LV et al (2006) CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8:933–944

    Article  CAS  Google Scholar 

  10. Alzamora R, Thali RF, Gong F et al (2010) PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 285:24676–24685

    Article  CAS  Google Scholar 

  11. Dames P, Zimmermann B, Schmidt R et al (2006) cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands. Proc Natl Acad Sci U S A 103:3926–3931

    Article  CAS  Google Scholar 

  12. Wiggins SV, Steegborn C, Levin LR et al (2018) Pharmacological modulation of the CO2/HCO3(−)/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 190:173–186

    Article  CAS  Google Scholar 

  13. Coffey EE, Beckel JM, Laties AM et al (2014) Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263:111–124

    Article  CAS  Google Scholar 

  14. Liu J, Lu W, Reigada D et al (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(−/−) mice: pharmacologic approaches and functional recovery. Invest Ophthalmol Vis Sci 49:772–780

    Article  Google Scholar 

  15. Loov C, Mitchell CH, Simonsson M et al (2015) Slow degradation in phagocytic astrocytes can be enhanced by lysosomal acidification. Glia 63:1997–2009

    Article  Google Scholar 

  16. Colacurcio DJ, Nixon RA (2016) Disorders of lysosomal acidification-the emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 32:75–88

    Article  CAS  Google Scholar 

  17. Li M, Mccann JD, Liedtket CM et al (1988) Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature 331:358

    Article  CAS  Google Scholar 

  18. Majumdar A, Cruz D, Asamoah N et al (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18:1490–1496

    Article  CAS  Google Scholar 

  19. Wolfe DM, Lee JH, Kumar A et al (2013) Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci 37:1949–1961

    Article  Google Scholar 

  20. Guha S, Liu J, Baltazar G et al (2014) Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells. Adv Exp Med Biol 801:105–111

    Article  Google Scholar 

  21. Majumdar A, Chung H, Dolios G et al (2008) Degradation of fibrillar forms of Alzheimer's amyloid beta-peptide by macrophages. Neurobiol Aging 29:707–715

    Article  CAS  Google Scholar 

  22. Folts CJ, Scott-Hewitt N, Proschel C et al (2016) Lysosomal re-acidification prevents Lysosphingolipid-induced Lysosomal impairment and cellular toxicity. PLoS Biol 14:e1002583

    Article  Google Scholar 

  23. Liu J, Lu W, Guha S et al (2012) Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells. Am J Physiol Cell Physiol 303:C160–C169

    Article  CAS  Google Scholar 

  24. Visentin S, De Nuccio C, Bernardo A et al (2013) The stimulation of adenosine A2A receptors ameliorates the pathological phenotype of fibroblasts from Niemann-pick type C patients. J Neurosci 33:15388–15393

    Article  CAS  Google Scholar 

  25. Guha S, Baltazar GC, Tu LA et al (2012) Stimulation of the D5 dopamine receptor acidifies the lysosomal pH of retinal pigmented epithelial cells and decreases accumulation of autofluorescent photoreceptor debris. J Neurochem 122:823–833

    Article  CAS  Google Scholar 

  26. Lu W, Gomez NM, Lim JC et al (2018) The P2Y12 receptor antagonist ticagrelor reduces lysosomal pH and autofluorescence in retinal pigmented epithelial cells from the ABCA4(−/−) mouse model of retinal degeneration. Front Pharmacol 9:242

    Article  Google Scholar 

  27. Guha S, Coffey EE, Lu W et al (2014) Approaches for detecting lysosomal alkalinization and impaired degradation in fresh and cultured RPE cells: evidence for a role in retinal degenerations. Exp Eye Res 126:68–76

    Article  CAS  Google Scholar 

  28. Barrett AJ, Kirschke H (1981) [41] Cathepsin B, cathepsin H, and cathepsin L. In: Methods in enzymology. Elsevier, Amsterdam, pp 535–561

    Google Scholar 

  29. Corvol P, Eyries M, Soubrier F (2004) In: Barret A, Rawlings N, Woesser J (eds) Handbook of proteolytic enzymes. Academic Press, San Diego, pp 332–349

    Chapter  Google Scholar 

  30. Harlan FK, Lusk JS, Mohr BM et al (2016) Fluorogenic substrates for visualizing acidic organelle enzyme activities. PLoS One 11:e0156312

    Article  Google Scholar 

  31. Eriksson I, Öllinger K, Appelqvist H (2017) Analysis of lysosomal pH by flow cytometry using FITC-dextran loaded cells. In: Lysosomes: methods and protocols. NY Springer New York Imprint : Humana Press, New York, pp 179–189

    Chapter  Google Scholar 

  32. Lööv C, Erlandsson A (2017) Lysosomal acidification in cultured astrocytes using nanoparticles. In: Lysosomes: methods and protocols. NY Springer New York Imprint : Humana Press, New York, pp 165–177

    Chapter  Google Scholar 

  33. Lin HJ, Herman P, Kang JS et al (2001) Fluorescence lifetime characterization of novel low-pH probes. Anal Biochem 294:118–125

    Article  CAS  Google Scholar 

  34. Zheng M-H, Hu X, Yang M-Y et al (2015) Ratiometically fluorescent sensing of Zn (II) based on dual-emission of 2-pyridylthiazole derivatives. J Fluoresc 25:1831–1834

    Article  CAS  Google Scholar 

  35. Zhu M, Xing P, Zhou Y et al (2018) Lysosome-targeting ratiometric fluorescent pH probes based on long-wavelength BODIPY. J Mater Chem B 6(27):4422–4426

    Article  CAS  Google Scholar 

  36. Depedro HM, Urayama P (2009) Using LysoSensor yellow/blue DND-160 to sense acidic pH under high hydrostatic pressures. Anal Biochem 384:359–361

    Article  CAS  Google Scholar 

  37. Chinn A, Michkov A, Insel PA et al (2017) Flow cytometry-based quantification of cyclic AMP in primary human neutrophils. FASEB J 31:Abstract 818.6

    Google Scholar 

  38. Gabriel D, Vernier M, Pfeifer MJ et al (2003) High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Dev Technol 1:291–303

    Article  CAS  Google Scholar 

  39. Post SR, Ostrom RS, Insel PA (2000) Biochemical methods for detection and measurement of cyclic AMP and adenylyl cyclase activity. Methods Mol Biol 126:363–374

    CAS  PubMed  Google Scholar 

  40. Raspe M, Klarenbeek J, Jalink K (2015) Recording intracellular cAMP levels with EPAC-based FRET sensors by fluorescence lifetime imaging. Methods Mol Biol 1294:13–24

    Article  CAS  Google Scholar 

  41. Williams C (2004) cAMP detection methods in HTS: selecting the best from the rest. Nat Rev Drug Discov 3:125–135

    Article  CAS  Google Scholar 

  42. Bond AE, Ding S, Williams CM et al (2011) Mass spectrometric fragmentation behaviour of cAMP analogues. Int J Mass Spectrom 304:130–139

    Article  CAS  Google Scholar 

  43. Ren J, Mi Z, Stewart NA et al (2009) Identification and quantification of 2′,3'-cAMP release by the kidney. J Pharmacol Exp Ther 328:855–865

    Article  CAS  Google Scholar 

  44. Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242

    Article  CAS  Google Scholar 

  45. Banoub JH, Limbach PA (2009) Mass spectrometry of nucleosides and nucleic acids. CRC Press, Boca Raton

    Book  Google Scholar 

  46. Roberts LD, Souza AL, Gerszten RE et al (2012) Targeted metabolomics. Curr Protoc Mol Biol. Chapter 30:Unit 30 32 31–24

    Google Scholar 

  47. Burhenne H, Kaever V (2013) Quantification of cyclic dinucleotides by reversed-phase LC-MS/MS. Methods Mol Biol 1016:27–37

    Article  CAS  Google Scholar 

  48. Irie Y, Parsek MR (2014) LC/MS/MS-based quantitative assay for the secondary messenger molecule, c-di-GMP. Methods Mol Biol 1149:271–279

    Article  CAS  Google Scholar 

  49. Peifer S, Schneider K, Nurenberg G et al (2012) Quantitation of intracellular purine intermediates in different Corynebacteria using electrospray LC-MS/MS. Anal Bioanal Chem 404:2295–2305

    Article  CAS  Google Scholar 

  50. Spangler C, Bohm A, Jenal U et al (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81:226–231

    Article  CAS  Google Scholar 

  51. Sun G, Yang K, Zhao Z et al (2007) Shotgun metabolomics approach for the analysis of negatively charged water-soluble cellular metabolites from mouse heart tissue. Anal Chem 79:6629–6640

    Article  CAS  Google Scholar 

  52. Zhang G, Walker AD, Lin Z et al (2014) Strategies for quantitation of endogenous adenine nucleotides in human plasma using novel ion-pair hydrophilic interaction chromatography coupled with tandem mass spectrometry. J Chromatogr A 1325:129–136

    Article  CAS  Google Scholar 

  53. Tsugawa H, Matsuda F (2016) LC/QqQ/MS analysis: widely targeted metabolomics on the basis of multiple reaction monitoring. In: Mass spectrometry-based metabolomics. CRC Press, Boca Raton, pp 148–180

    Google Scholar 

  54. Wei R, Li G, Seymour AB (2014) Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM. In: Mass spectrometry in metabolomics. Springer, Berlin, pp 171–199

    Google Scholar 

  55. Wilson L, Arabshahi A, Simons B et al (2014) Improved high sensitivity analysis of polyphenols and their metabolites by nano-liquid chromatography-mass spectrometry. Arch Biochem Biophys 559:3–11

    Article  CAS  Google Scholar 

  56. Yuan M, Breitkopf SB, Yang X et al (2012) A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7:872

    Article  CAS  Google Scholar 

  57. Ren J, Mi ZC, Jackson EK (2008) Assessment of nerve stimulation-induced release of purines from mouse kidneys by tandem mass spectrometry. J Pharmacol Exp Ther 325:920–926

    Article  CAS  Google Scholar 

  58. Kenar E, Franken H, Forcisi S et al (2014) Automated label-free quantification of metabolites from liquid chromatography-mass spectrometry data. Mol Cell Proteomics 13:348–359

    Article  CAS  Google Scholar 

  59. Neilson KA, Ali NA, Muralidharan S et al (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  CAS  Google Scholar 

  60. Strzelecka D, Chmielinski S, Bednarek S et al (2017) Analysis of mononucleotides by tandem mass spectrometry: investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues. Sci Rep 7:8931

    Article  Google Scholar 

  61. Guo B (2012) LC-MS-based analytical strategies for targeted profiling of metabolites/biomarkers in complex systems. Curr Drug Metab 13:1205

    Article  CAS  Google Scholar 

  62. Zhu ZJ, Schultz AW, Wang J et al (2013) Liquid chromatography quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN database. Nat Protoc 8:451–460

    Article  CAS  Google Scholar 

  63. Beckel JM, Gomez NM, Lu W et al (2018) Stimulation of TLR3 triggers release of lysosomal ATP in astrocytes and epithelial cells that requires TRPML1 channels. Sci Rep 8:5726

    Article  Google Scholar 

  64. Health UDO, Services H (2001) Guidance for industry, bioanalytical method validation. http://www.fda.gov/cder/guidance/index.htm

  65. Moens W, Vokaer A, Kram R (1975) Cyclic AMP and cyclic GMP concentrations in serum- and density-restricted fibroblast cultures. Proc Natl Acad Sci U S A 72:1063–1067

    Article  CAS  Google Scholar 

  66. Sasaki T, Lian S, Qi J et al (2014) Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet 10:e1004409

    Article  Google Scholar 

  67. Liu X, Su Y, Tian H et al (2017) Ratiometric fluorescent probe for Lysosomal pH measurement and imaging in living cells using single-wavelength excitation. Anal Chem 89:7038–7045

    Article  CAS  Google Scholar 

  68. Wang C, Zhao T, Li Y et al (2017) Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv Drug Deliv Rev 113:87–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Mr. Dipankar Malakar, Sciex(India), for assistance with the data analysis. The program was supported by the Centre for Advanced Research grant from the Indian Council of Medical Research and DBT-Twinning Research Grant, from the Department of Biotechnology, Government of India, to DG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maity, C., Ghosh, D., Guha, S. (2019). Assays for Intracellular Cyclic Adenosine Monophosphate (cAMP) and Lysosomal Acidification. In: Bhattacharya, S. (eds) Metabolomics. Methods in Molecular Biology, vol 1996. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9488-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9488-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9487-8

  • Online ISBN: 978-1-4939-9488-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics