Skip to main content

Quantification of Lipid Content in Oleaginous Biomass Using Thermogravimetry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1995))

Abstract

Laboratory analytical techniques employed for triglyceride quantification in oleaginous biomass (e.g., microalgae and oilseeds) involve multiple steps and typically require use of volatile organic solvents. Here we describe a single-step approach for measurement of triglycerides using thermogravimetry (TG). We have observed that triglycerides undergo complete volatilization over a narrow temperature interval of 370–450 °C, with negligible solid residue under inert atmosphere, whereas other constituents of oleaginous biomass (such as proteins and carbohydrates) primarily degrade below 350 °C. As a result, triglyceride content of biomass can be estimated using TG by determining the mass loss of the sample in the temperature interval of 370–450 °C.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vadlamani A, Viamajala S, Pendyala B, Varanasi S (2017) Cultivation of microalgae at extreme alkaline pH conditions–a novel approach for biofuel production. ACS Sust Chem Eng 5(8):7284–7294

    Article  CAS  Google Scholar 

  2. Sanchez DL, Nelson JH, Johnston J, Mileva A, Kammen DM (2015) Biomass enables the transition to a carbon-negative power system across western North America. Nat Clim Chang 5(3):230–234

    Article  CAS  Google Scholar 

  3. DOE, U.S. Department Of Energy (2016) National algal biofuels technology review. U.S. Department Of Energy, O.O.E.E.A.R.E., Bioenergy Technologies Office, Washington, D.C.

    Google Scholar 

  4. Amaro HM, Guedes AC, Malcata FX (2011) Advances perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410

    Article  CAS  Google Scholar 

  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  6. Kumari P, Reddy CRK, Jha B (2011) Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem 415(2):134–144

    Article  CAS  Google Scholar 

  7. Lee S, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12(7):553–556

    Article  CAS  Google Scholar 

  8. Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113(5):539–547

    Article  CAS  Google Scholar 

  9. Laurens LM, Quinn M, Van Wychen S, Templeton DW, Wolfrum EJ (2012) Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Anal Bioanal Chem 403(1):167–178

    Article  CAS  Google Scholar 

  10. Lohman EJ, Gardner RD, Halverson L, Macur RE, Peyton BM, Gerlach R (2013) An efficient and scalable extraction and quantification method for algal derived biofuel. J Microbiol Methods 94(3):159–396

    Article  Google Scholar 

  11. Retief L (2018) Analysis of vegetable oils, seeds and beans by TGA and NMR spectroscopy. Department of chemistry and polymer science. University Of Stellenbosch, Stellenbosch, South Africa, p 196

    Google Scholar 

  12. Nelson DR, Viamajala S (2016) One-pot synthesis and recovery of fatty acid methyl esters (fames) from microalgae biomass. Catal Today 269:29–39

    Article  CAS  Google Scholar 

  13. Elder JP (1983) Proximate analysis by automated thermogravimetry. Fuel 62(5):580–584

    Article  CAS  Google Scholar 

  14. Kök M (2008) Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim 91(3):763–773

    Article  Google Scholar 

  15. Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102(23):11018–11026

    Article  CAS  Google Scholar 

  16. Petrakis L, Grandy DW (1980) Coal analysis, characterization and petrography. J Chem Educ 57(10):689–694

    Article  CAS  Google Scholar 

  17. Canetti M, Bertini F, Chirico AE, Audisio G (2006) Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab 91(3):494–498

    Article  CAS  Google Scholar 

  18. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  19. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liag DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuel 20:388–393

    Article  CAS  Google Scholar 

  20. Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102(7):4890–4896

    Article  CAS  Google Scholar 

  21. Laresgoiti MF, Caballero BM, de Marco I, Torres A, Cabrero M, Chomón MJ (2004) Characterization of the liquid products obtained in Tyre pyrolysis. J Anal Appl Pyrolysis 71(2):917–934

    Article  CAS  Google Scholar 

  22. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Pol Sci Part C Pol Symp 6(1):183–195

    Article  Google Scholar 

  23. Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Ind Eng Chem Res 45(9):3248–3255

    Article  CAS  Google Scholar 

  24. Damartzis T, Vamvukab D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102(10):6230–6238

    Article  CAS  Google Scholar 

  25. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Pol Sci 5(15):285–292

    Article  CAS  Google Scholar 

  26. Kok MV, Pamir MR (1995) Pyrolysis and combustion studies of fossil fuels by thermal analysis methods. J Anal Appl Pyrolysis 35(2):145–156

    Article  Google Scholar 

  27. Murugan P, Mahinpey N, Johnson KE, Wilson M (2008) Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods. Energy Fuel 22(4):2720–2724

    Article  CAS  Google Scholar 

  28. Maddi B, Vadlamani A, Vaimajala S, Varanasi S (2017) Quantification of triglyceride content in oleaginous materials using thermo-gravimetry. J Anal Appl Pyrolysis 128:232–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by (1) the US Department of Energy Bioenergy Technologies Office (award# DE-EE0005993) and (2) the National Science Foundation through the Sustainable Energy Pathways Program (award# CHE-1230609)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Viamajala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maddi, B., Vadlamani, A., Viamajala, S., Varanasi, S. (2019). Quantification of Lipid Content in Oleaginous Biomass Using Thermogravimetry. In: Balan, V. (eds) Microbial Lipid Production. Methods in Molecular Biology, vol 1995. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9484-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9484-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9483-0

  • Online ISBN: 978-1-4939-9484-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics