Skip to main content

Assessing Neuronal Excitability on a Fluorometric Imaging Plate Reader (FLIPR) Following a Defined Electrostimulation Paradigm

  • Protocol
  • First Online:
Book cover Cell-Based Assays Using iPSCs for Drug Development and Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1994))

Abstract

FLIPR-based calcium assay enables the detection and characterization of neuronal excitability by using electrical field stimulation to evoke and record action potential-driven calcium transients in induced pluripotent stem cell (iPSC)-derived cortical forebrain neurons. Here we describe high throughput measurement of neuronal excitability with a defined electrostimulation paradigm in a 384-well plate format using FLIPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Eijkelkamp N et al (2012) Neurological perspectives on voltage-gated sodium channels. Brain 135(Pt 9):2585–2612

    Article  Google Scholar 

  2. Hedrich UB et al (2014) Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation. J Neurosci 34(45):14874–14889

    Article  Google Scholar 

  3. Frazzini V et al (2016) Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer’s disease mouse model. Cell Death Dis 7:e2100

    Article  CAS  Google Scholar 

  4. Lasarge CL, Danzer SC (2014) Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci 7:18

    Article  Google Scholar 

  5. Mertens J et al (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527(7576):95–99

    Article  CAS  Google Scholar 

  6. Wainger BJ et al (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7(1):1–11

    Article  CAS  Google Scholar 

  7. Virdee JK et al (2017) A high-throughput model for investigating neuronal function and synaptic transmission in cultured neuronal networks. Sci Rep 7(1):14498

    Article  Google Scholar 

  8. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  Google Scholar 

  9. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  Google Scholar 

  10. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    Article  CAS  Google Scholar 

  11. Mezler M et al (2012) Development and validation of a fluorescence-based HTS assay for the identification of P/Q-type calcium channel blockers. Comb Chem High Throughput Screen 15(5):372–385

    Article  CAS  Google Scholar 

  12. Smetters D, Majewska A, Yuste R (1999) Detecting action potentials in neuronal populations with calcium imaging. Methods 18(2):215–221

    Article  CAS  Google Scholar 

  13. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7(10):1836–1846

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Kizner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kizner, V., Fischer, S., Jähnke, B., Naujock, M. (2019). Assessing Neuronal Excitability on a Fluorometric Imaging Plate Reader (FLIPR) Following a Defined Electrostimulation Paradigm. In: Mandenius, CF., Ross, J. (eds) Cell-Based Assays Using iPSCs for Drug Development and Testing. Methods in Molecular Biology, vol 1994. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9477-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9477-9_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9476-2

  • Online ISBN: 978-1-4939-9477-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics