Skip to main content

Effects of the Extracellular Matrix on the Proteome of Primary Skin Fibroblasts

  • Protocol
  • First Online:
Skin Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1993))

Abstract

The cellular microenvironment often plays a crucial role in disease development and progression. In recessive dystrophic epidermolysis bullosa (RDEB), biallelic mutations of the gene COL7A1, encoding for collagen VII, the main component of anchoring fibrils, lead to a loss of collagen VII in the extracellular matrix (ECM). Loss of collagen VII in skin is linked to a destabilization of the dermal-epidermal junction zone, blister formation, chronic wounds, fibrosis, and aggressive skin cancer. Thus, RDEB cells can serve as a model system to study the effects of a perturbed ECM on the cellular proteome. In this chapter, we describe in detail the combination of stable isotope labeling by amino acids in cell culture (SILAC) of primary skin fibroblasts with reseeding of fibroblasts on decellularized collagen VII-positive and -negative ECM to study the consequences of collagen VII loss on the cellular proteome. This approach allows the quantitative, time-resolved analysis of cellular protein dynamics in response to ECM perturbation by liquid chromatography-mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801

    Article  CAS  Google Scholar 

  2. Figliuzzi M, Remuzzi G, Remuzzi A (2014) Renal bioengineering with scaffolds generated from rat and pig kidneys. Nephron Exp Nephrol 126(2):113

    Article  CAS  Google Scholar 

  3. Shaikh FM et al (2008) Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188(4):333–346

    Article  CAS  Google Scholar 

  4. Ross EA et al (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347

    Article  Google Scholar 

  5. Has C et al (2018) Epidermolysis bullosa: molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol 71–72:313–329. https://doi.org/10.1016/j.matbio.2018.04.001

    Article  CAS  Google Scholar 

  6. Burgeson RE (1993) Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J Invest Dermatol 101(3):252–255

    Article  CAS  Google Scholar 

  7. Becker AC et al (2012) Friend or food: different cues to the autophagosomal proteome. Autophagy 8(6):995–996

    Article  CAS  Google Scholar 

  8. Fine J-D et al (2008) The classification of inherited epidermolysis bullosa (EB): Report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J Am Acad Dermatol 58(6):931–950

    Article  Google Scholar 

  9. Küttner V et al (2013) Global remodelling of cellular microenvironment due to loss of collagen VII. Mol Syst Biol 9:657

    Article  Google Scholar 

  10. Mittapalli VR et al (2016) Injury-driven stiffening of the dermis expedites skin carcinoma progression. Cancer Res 76(4):940–951

    Article  CAS  Google Scholar 

  11. Kuttner V et al (2014) Loss of collagen VII is associated with reduced transglutaminase 2 abundance and activity. J Invest Dermatol 134(9):2381–2389

    Article  Google Scholar 

  12. Thriene K et al (2018) Combinatorial omics analysis reveals perturbed lysosomal homeostasis in collagen VII-deficient keratinocytes. Mol Cell Proteomics 17(4):565–579

    Article  CAS  Google Scholar 

  13. Fischer R, Kessler BM (2015) Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells. Proteomics 15(7):1224–1229

    Article  CAS  Google Scholar 

  14. Gilar M et al (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77(19):6426–6434

    Article  CAS  Google Scholar 

  15. Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13(12):6176–6186

    Article  CAS  Google Scholar 

  16. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  Google Scholar 

  17. Vlodavsky I (2001) Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc Cell Biol Chapter 10:Unit 10.4. https://doi.org/10.1002/0471143030.cb1004s01

    Article  CAS  Google Scholar 

  18. Saveliev S et al (2013) Trypsin/Lys-C protease mix for enhanced protein mass spectrometry analysis. Nat Methods 10:1134

    Article  Google Scholar 

  19. Rackiewicz M et al (2017) Hydrophobic interaction chromatography for bottom-up proteomics analysis of single proteins and protein complexes. J Proteome Res 16(6):2318–2323

    Article  CAS  Google Scholar 

  20. Tyanova S et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740

    Article  CAS  Google Scholar 

  21. Naba A et al (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24

    Article  CAS  Google Scholar 

  22. Saeed AI et al (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34(2):374–378

    Article  CAS  Google Scholar 

  23. Szklarczyk D et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    Article  CAS  Google Scholar 

  24. Nystrom A et al (2015) Losartan ameliorates dystrophic epidermolysis bullosa and uncovers new disease mechanisms. EMBO Mol Med 7(9):1211–1228

    Article  Google Scholar 

  25. Nystrom A et al (2013) Collagen VII plays a dual role in wound healing. J Clin Invest 123(8):3498–3509

    Article  Google Scholar 

  26. Neves H, Kwok HF (2017) In sickness and in health: the many roles of the minichromosome maintenance proteins. Biochim Biophys Acta 1868(1):295–308

    CAS  Google Scholar 

  27. Chan I (2004) The role of extracellular matrix protein 1 in human skin. Clin Exp Dermatol 29(1):52–56

    Article  CAS  Google Scholar 

  28. Sercu S et al (2008) Interaction of extracellular matrix protein 1 with extracellular matrix components: ECM1 is a basement membrane protein of the skin. J Invest Dermatol 128(6):1397–1408

    Article  CAS  Google Scholar 

  29. Lee KM et al (2014) Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res 16(6):479

    Article  Google Scholar 

  30. Lee KM et al (2015) ECM1 regulates tumor metastasis and CSC-like property through stabilization of beta-catenin. Oncogene 34(50):6055–6065

    Article  CAS  Google Scholar 

  31. Han Z et al (2001) Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15(6):988–994

    Article  CAS  Google Scholar 

  32. Wang L et al (2003) Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200(1):57–67

    Article  CAS  Google Scholar 

  33. Fine JD et al (2009) Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986–2006. J Am Acad Dermatol 60(2):203–211

    Article  Google Scholar 

  34. Szklarczyk D et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368

    Article  CAS  Google Scholar 

  35. Murad S et al (1981) Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci U S A 78(5):2879–2882

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the Protein Homeostasis laboratory of Prof. Jörn Dengjel for their help and discussions. We thank Prof. Leena Bruckner-Tuderman and the Molecular Dermatology laboratory of the University Clinic Freiburg i. Br. for providing the fibroblasts. This research was supported by the German Research Foundation (DFG) through grant DE 1757/3-2 and by the Swiss National Science Foundation (SNSF) through grant 31003A-166482/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Dengjel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tölle, R.C., Dengjel, J. (2019). Effects of the Extracellular Matrix on the Proteome of Primary Skin Fibroblasts. In: Böttcher-Haberzeth, S., Biedermann, T. (eds) Skin Tissue Engineering. Methods in Molecular Biology, vol 1993. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9473-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9473-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9472-4

  • Online ISBN: 978-1-4939-9473-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics