Skip to main content

Fabrication of a Co-Culture System with Human Sweat Gland-Derived Cells and Peripheral Nerve Cells

  • Protocol
  • First Online:
Skin Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1993))

Abstract

The interaction of peripheral nerves with different cells of the skin is a relevant aspect of many physiological processes including nociception, temperature control, and wound healing. Here we describe a protocol for the setup of an indirect co-culture system of peripheral nerve cells and sweat gland-derived stem cells, which can be used to quantify neurite outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forda S, Kelly JS (1985) The possible modulation of the development of rat dorsal root ganglion cells by the presence of 5-HT-containing neurons of the brainstem in dissociated cell culture. Brain Res 354(1):55–65

    Article  CAS  Google Scholar 

  2. Currie KP, Swann K, Galione A, Scott RH (1992) Activation of Ca(2+)-dependent currents in cultured rat dorsal root ganglion neurons by a sperm factor and cyclic ADP-ribose. Mol Biol Cell 3(12):1415–1425

    Article  CAS  Google Scholar 

  3. Chen JJ, Vasko MR, Wu X, Staeva TP, Baez M, Zgombick JM, Nelson DL (1998) Multiple subtypes of serotonin receptors are expressed in rat sensory neurons in culture. J Pharmacol Exp Ther 287(3):1119–1127

    CAS  Google Scholar 

  4. Tonge D, Edstrom A, Ekstrom P (1998) Use of explant cultures of peripheral nerves of adult vertebrates to study axonal regeneration in vitro. Prog Neurobiol 54(4):459–480

    Article  CAS  Google Scholar 

  5. Melli G, Hoke A (2009) Dorsal root ganglia sensory neuronal cultures: a tool for drug discovery for peripheral neuropathies. Expert Opin Drug Discov 4(10):1035–1045. https://doi.org/10.1517/17460440903266829

    Article  CAS  Google Scholar 

  6. Khammo N, Ogilvie J, Clothier RH (2007) Development of an innervated model of human skin. Altern Lab Anim 35(5):487–491

    Article  CAS  Google Scholar 

  7. Lebonvallet N, Pennec JP, Le Gall-Ianotto C, Cheret J, Jeanmaire C, Carre JL, Pauly G, Misery L (2014) Activation of primary sensory neurons by the topical application of capsaicin on the epidermis of a re-innervated organotypic human skin model. Exp Dermatol 23(1):73–75. https://doi.org/10.1111/exd.12294

    Article  CAS  Google Scholar 

  8. Roggenkamp D, Kopnick S, Stab F, Wenck H, Schmelz M, Neufang G (2013) Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol 133(6):1620–1628. https://doi.org/10.1038/jid.2012.464

    Article  CAS  Google Scholar 

  9. Danner S, Kremer M, Petschnik AE, Nagel S, Zhang Z, Hopfner U, Reckhenrich AK, Weber C, Schenck TL, Becker T, Kruse C, Machens HG, Egana JT (2012) The use of human sweat gland-derived stem cells for enhancing vascularization during dermal regeneration. J Invest Dermatol 132(6):1707–1716. https://doi.org/10.1038/jid.2012.31

    Article  CAS  Google Scholar 

  10. Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, Blanpain C, Fuchs E (2012) Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150(1):136–150. https://doi.org/10.1016/j.cell.2012.04.045

    Article  CAS  Google Scholar 

  11. Sebastian A, Volk SW, Halai P, Colthurst J, Paus R, Bayat A (2017) Enhanced neurogenic biomarker expression and reinnervation in human acute skin wounds treated by electrical stimulation. J Invest Dermatol 137(3):737–747

    Article  CAS  Google Scholar 

  12. Mehnert JM, Kisch T, Brandenburger M (2014) Co-culture systems of human sweat gland derived stem cells and peripheral nerve cells: an in vitro approach for peripheral nerve regeneration. Cell Physiol Biochem 34(4):1027–1037. https://doi.org/10.1159/000366318

    Article  CAS  Google Scholar 

  13. Dietrich PS, McGivern JG, Delgado SG, Koch BD, Eglen RM, Hunter JC, Sangameswaran L (1998) Functional analysis of a voltage-gated sodium channel and its splice variant from rat dorsal root ganglia. J Neurochem 70(6):2262–2272

    Article  CAS  Google Scholar 

  14. Hertz DL, Owzar K, Lessans S, Wing C, Jiang C, Kelly WK, Patel J, Halabi S, Furukawa Y, Wheeler HE, Sibley AB, Lassiter C, Weisman L, Watson D, Krens SD, Mulkey F, Renn CL, Small EJ, Febbo PG, Shterev I, Kroetz DL, Friedman PN, Mahoney JF, Carducci MA, Kelley MJ, Nakamura Y, Kubo M, Dorsey SG, Dolan ME, Morris MJ, Ratain MJ, McLeod HL (2016) Pharmacogenetic discovery in CALGB (Alliance) 90401 and mechanistic validation of a VAC14 polymorphism that increases risk of docetaxel-induced neuropathy. Clin Cancer Res 22(19):4890–4900. https://doi.org/10.1158/1078-0432.CCR-15-2823

    Article  CAS  Google Scholar 

  15. Wing C, Komatsu M, Delaney SM, Krause M, Wheeler HE, Dolan ME (2017) Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res 22:79–88

    Article  CAS  Google Scholar 

  16. Condurache AP, Mertins A (2012) Segmentation of retinal vessels with a hysteresis binary-classification paradigm. Comput Med Imaging Graph 36(4):325–335. https://doi.org/10.1016/j.compmedimag.2012.02.002

    Article  Google Scholar 

  17. Egana JT, Condurache A, Lohmeyer JA, Kremer M, Stockelhuber BM, Lavandero S, Machens HG (2009) Ex vivo method to visualize and quantify vascular networks in native and tissue engineered skin. Langenbeck’s Arch Surg 394(2):349–356. https://doi.org/10.1007/s00423-008-0333-3

    Article  Google Scholar 

  18. Machens HG, Grzybowski S, Bucsky B, Spanholtz T, Niedworok C, Maichle A, Stockelhuber B, Condurache A, Liu F, Egana JT, Kaun M, Mailander P, Aach T (2006) A technique to detect and to quantify fasciocutaneous blood vessels in small laboratory animals ex vivo. J Surg Res 131(1):91–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Brandenburger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brandenburger, M., Kruse, C. (2019). Fabrication of a Co-Culture System with Human Sweat Gland-Derived Cells and Peripheral Nerve Cells. In: Böttcher-Haberzeth, S., Biedermann, T. (eds) Skin Tissue Engineering. Methods in Molecular Biology, vol 1993. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9473-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9473-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9472-4

  • Online ISBN: 978-1-4939-9473-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics