Skip to main content

Visualizing and Quantifying In Vivo Cortical Cytoskeleton Structure and Dynamics

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

The cortical microtubule and actin meshworks play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM), spinning disk confocal microscopy (SDCM), and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of free computing tools based on the publicly available ImageJ software package, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crowell EF, Gonneau M, Vernhettes S, Höfte H (2010) Regulation of anisotropic cell expansion in higher plants. C R Biol 333:320–324

    Article  CAS  Google Scholar 

  2. Blanchoin L, Boujemaa-Paterski R, Henty JL, Khurana P, Staiger CJ (2010) Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game. Curr Opin Plant Biol 13:714–723

    Article  CAS  Google Scholar 

  3. Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–112

    Article  CAS  Google Scholar 

  4. Pei W, Du F, Zhang Y, He T, Ren H (2012) Control of the actin cytoskeleton in root hair development. Plant Sci 197:10–18

    Article  Google Scholar 

  5. Armour W, Barton DA, Law AM, Overall RL (2015) Differential growth in periclinal and anticlinal walls during lobe formation in Arabidopsis cotyledon pavement cells. Plant Cell 27:2484–2500

    Article  CAS  Google Scholar 

  6. Žárský V, Cvrčková F, Potocký M, Hála M (2009) Exocytosis and cell polarity in plants–exocyst and recycling domains. New Phytol 183:255–272

    Article  Google Scholar 

  7. Ueda K, Matsuyama T, Hashimoto T (1999) Visualization of microtubules in living cells of transgenic Arabidopsis thaliana. Protoplasma 206:201–206

    Article  Google Scholar 

  8. Nakamura M, Naoi K, Shoji T, Hashimoto T (2004) Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol 45:1330–1334

    Article  CAS  Google Scholar 

  9. Marc J, Granger CL, Brincat J, Fisher DD, Kao T et al (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inzé D et al (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136:3956–3967

    Article  Google Scholar 

  11. Chan J, Calder G, Fox S, Lloyd C (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17:1737–1748

    Article  CAS  Google Scholar 

  12. Dhonukshe P, Gadella TWJ (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15:597–611

    Article  CAS  Google Scholar 

  13. Kost B, Spielhofer P, Chua NH (1998) A GFP-mouse Talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16:393–401

    Article  CAS  Google Scholar 

  14. Sheahan MB, Staiger CJ, Rose RJ, McCurdy DW (2004) A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol 136:3968–3978

    Article  CAS  Google Scholar 

  15. Voigt B, Timmers ACJ, Šamaj J, Müller J, Baluska F et al (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    Article  CAS  Google Scholar 

  16. Era A, Tominaga M, Ebine K, Awai C, Saito C et al (2009) Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol 50:1041–1048

    Article  CAS  Google Scholar 

  17. Hashimoto T (2002) Molecular genetic analysis of left-right handedness in plants. Philos Trans R Soc Lond Ser B Biol Sci 357:799–808

    Article  CAS  Google Scholar 

  18. Ketelaar T, Anthony RG, Hussey PJ (2004) Green fluorescent protein-mTalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing Factor’s actin depolymerizing activity in vitro. Plant Physiol 136:3990–3998

    Article  CAS  Google Scholar 

  19. Cvrčková F, Grunt M, Žárský V (2012) Expression of GFP-mTalin reveals an actin-related role for the Arabidopsis class II formin AtFH12. Biol Plant 56:431–440

    Article  Google Scholar 

  20. Cvrčková F, Oulehlová D (2017) A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex. Plant Methods 13:19

    Article  Google Scholar 

  21. Jonkman J, Brown CM (2015) Any way you slice it-a comparison of confocal microscopy techniques. J Biomol Tech 26:54–65

    PubMed  PubMed Central  Google Scholar 

  22. Staiger CJ, Sheahan MB, Khurana P, Wang X, McCurdy DW et al (2009) Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol 184:269–280

    Article  CAS  Google Scholar 

  23. Smertenko A, Deeks MJ, Hussey P (2010) Strategies of actin reorganisation in plant cells. J Cell Sci 123:3019–3028

    Article  CAS  Google Scholar 

  24. Vizcay-Barrena G, Webb S, Martin-Fernandez M, Wilson ZA (2011) Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescent microscopy (TIRFM). J Exp Bot 62:5419–5428

    Article  CAS  Google Scholar 

  25. Wan Y, Ash WM, Fan L, Hao H, Kim MK et al (2011) Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods 7:27

    Article  CAS  Google Scholar 

  26. Sparkes I, Graumann K, Martiniere A, Schoberer J, Wang P et al (2011) Bleach it, switch it, bounce it, pull it: using laser to reveal plant cell dynamics. J Exp Bot 62:1–7

    Article  CAS  Google Scholar 

  27. Rosero A, Žárský V, Cvrčková F (2013) AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J Exp Bot 64:585–597

    Article  CAS  Google Scholar 

  28. Rosero A, Oulehlová D, Stillerová L, Schiebertová P, Grunt M et al (2016) Arabidopsis FH1 formin affects cotyledon pavement cell shape by modulating cytoskeleton dynamics. Plant Cell Physiol 57:488–504

    Article  CAS  Google Scholar 

  29. Rosero A, Žárský V, Cvrčková F (2014) Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM. Methods Mol Biol 1080:87–97

    Article  CAS  Google Scholar 

  30. van der Honing H, Kieft H, Emons A, Ketelaar T (2012) Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol 58:1426–1438

    Article  Google Scholar 

  31. Higaki T, Kutsuna N, Sano T, Hasezawa S (2008) Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis. BMC Plant Biol 8:80

    Article  Google Scholar 

  32. Higaki T, Kutsuna N, Sano T, Kondo N et al (2010) Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J 61:156–165

    Article  CAS  Google Scholar 

  33. Sampathkumar A, Lindeboom J, Debolt S, Gutierrez R, Ehrhardt DW et al (2011) Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell 23:2302–2313

    Article  CAS  Google Scholar 

  34. Ketelaar T, Allwood EG, Anthony RG, Voigt B, Menzel D et al (2004) The actin-interacting protein AIP is essential for actin organization and plant development. Curr Biol 14:145–149

    Article  CAS  Google Scholar 

  35. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  Google Scholar 

  36. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  37. Higaki T (2017) Quantitative evaluation of cytoskeletal organizations by microscopic image analysis. Plant Morphology 29:15–21

    Article  Google Scholar 

  38. Henty JL, Bledsoe S, Khurana P, Meagher RB, Day B et al (2011) Arabidopsis actin depolymerizing factor 4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells. Plant Cell 23:3711–3726

    Article  CAS  Google Scholar 

  39. Li J, Henty JL, Huang S, Wang X, Blanchoin L et al (2012) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24:3742–3754

    Article  CAS  Google Scholar 

  40. Sasse J, Simon S, Gübeli C, Liu GW, Cheng X et al (2015) Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Curr Biol 25:647–655

    Article  CAS  Google Scholar 

  41. Yao M, Wakamatsu Y, Itoh T, Shoji T, Hashimoto T (2008) Arabidopsis SPIRAL2 promotes uninterrupted microtubule growth by suppressing the pause state of microtubule dynamics. J Cell Sci 121:2372–2381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The update and extension of this chapter, which was previously published as ref. 29,, has been supported by the GAČR 15-02610S project. We thank Boris Voigt, Richard Cyr and Matyáš Fendrych for transgenic Arabidopsis lines, Ondřej Šebesta, Ondřej Horváth, and Aleš Soukup for expert microscopy advice, Shiqi Zhang for helpful suggestions, and Marta Čadyová for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Cvrčková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rosero, A., Oulehlová, D., Žárský, V., Cvrčková, F. (2019). Visualizing and Quantifying In Vivo Cortical Cytoskeleton Structure and Dynamics. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics