Skip to main content

Antisense Oligodeoxynucleotide-Mediated Gene Knockdown in Pollen Tubes

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Specific gene knockdown mediated by the antisense oligodeoxynucleotides (AODNs) strategy emerged as a rapid and effective tool for probing gene role in plant cells, particularly tip-growing pollen tubes. Here, we describe the protocol for the successful employment of AODN technique in growing tobacco pollen tubes, covering AODN design, application, and analysis of the results. We also discuss the advantages and drawbacks of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cole RA, Fowler JE (2006) Polarized growth: maintaining focus on the tip. Curr Opin Plant Biol 9:579–588

    Article  CAS  Google Scholar 

  2. Potocký M, Eliáš M, Profotová B, Novotná Z, Valentová O et al (2003) Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217:122–130

    PubMed  Google Scholar 

  3. Potocký M, Jones MA, Bezvoda R, Smirnoff N, Žárský V (2007) Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol 174:742–751

    Article  Google Scholar 

  4. Zhang Y, McCormick S (2010) The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex Plant Reprod 23:87–93

    Article  Google Scholar 

  5. Watts JK, Corey DR (2012) Silencing disease genes in the laboratory and the clinic. J Pathol 226:365–379

    Article  CAS  Google Scholar 

  6. Ottenschläger I, Barinova I, Voronin V, Dahl M, Heberle-Bors E et al (1999) Green fluorescent protein (GFP) as a marker during pollen development. Transgenic Res 8:279–294

    Article  Google Scholar 

  7. Walder RY, Walder JA (1988) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A 85:5011–5015

    Article  CAS  Google Scholar 

  8. Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  CAS  Google Scholar 

  9. Moulton HM, Nelson MH, Hatlevig SA, Reddy MT, Iversen PL (2004) Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjug Chem 15:290–299

    Article  CAS  Google Scholar 

  10. Tsutsumi N, Kanayama K, Tano S (1992) Suppression of alpha-amylase gene expression by antisense oligodeoxynucleotide in barley cultured aleurone layers. Jpn J Genet 67:147–154

    Article  CAS  Google Scholar 

  11. Estruch JJ, Kadwell S, Merlin E, Crossland L (1994) Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci U S A 91:8837–8841

    Article  CAS  Google Scholar 

  12. Sun C, Höglund A-S, Olsson H, Mangelsen E, Jansson C (2005) Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signalling. Plant J 44:128–138

    Article  CAS  Google Scholar 

  13. Pleskot R, Potocký M, Pejchar P, Linek J, Bezvoda R et al (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62:494–507

    Article  CAS  Google Scholar 

  14. Moutinho A, Hussey PJ, Trewavas AJ, Malhó R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci U S A 98:10481–10486

    Article  CAS  Google Scholar 

  15. Camacho L, Malhó R (2003) Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J Exp Bot 54:83–92

    Article  CAS  Google Scholar 

  16. Sun C, Ridderstråle K, Höglund AS, Larsson LG, Jansson C (2007) Sweet delivery - sugar translocators as ports of entry for antisense oligodeoxynucleotides in plant cells. Plant J 52:1192–1198

    Article  CAS  Google Scholar 

  17. de Graaf BHJ, Rudd JJ, Wheeler MJ, Perry RM, Bell EM et al (2006) Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature 444:490–493

    Article  Google Scholar 

  18. Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M et al (2012) Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci 3:54

    Article  CAS  Google Scholar 

  19. Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada MJ, Potocká A et al (2012) NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. J Plant Physiol 169:1654–1663

    Article  Google Scholar 

  20. Hafidh S, Breznenová K, Růžička P, Feciková J, Čapková V et al (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12:24

    Article  CAS  Google Scholar 

  21. Mizuta Y, Higashiyama T (2014) Antisense gene inhibition by phosphorothioate antisense oligonucleotide in Arabidopsis pollen tubes. Plant J 78:516–526

    Article  CAS  Google Scholar 

  22. Liao F, Wang L, Yang LB, Zhang L, Peng X et al (2013) Antisense oligodeoxynucleotide inhibition as an alternative and convenient method for gene function analysis in pollen tubes. PLoS One 8:e59112

    Article  CAS  Google Scholar 

  23. Read SM, Clarke AE, Bacic A (1993) Stimulation of growth of cultured Nicotiana tabacum W 38 pollen tubes by poly(ethyleneglycol) and Cu(II) salts. Protoplasma 177:1–14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ lab is supported by Czech Science Foundation (grants no. 17-27477S, 18-18290J and 19-21758S) and by Ministry of Education Youth and Sport of the Czech Republic (project no. NPUI LO1417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Potocký .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Potocký, M., Bezvoda, R., Pejchar, P. (2019). Antisense Oligodeoxynucleotide-Mediated Gene Knockdown in Pollen Tubes. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics