Skip to main content

Automated Image Acquisition and Morphological Analysis of Cell Growth Mutants in Physcomitrella patens

  • Protocol
  • First Online:
Book cover Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

This protocol describes the automated imaging and a quantitative analysis of the morphology of small plants from the moss Physcomitrella patens. This method can be used for the analysis of growth phenotypes produced by transient RNA interference or for the analysis of stable mutant plants. Furthermore, we describe how to acquire higher resolution images via the acquisition of a collection of multiple overlapping tiles from the same image. Information is presented to guide the investigator in the choice of vectors and basic conditions to perform transient RNA interference in moss. Detailed directions and examples for fluorescence image acquisition of small regenerating moss plants are provided. Instructions for stitching image tiles and for using an ImageJ-based macro for the quantitative morphological analysis of moss plants are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cove D, Bezanilla M, Harries P, Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57:497–520

    Article  CAS  Google Scholar 

  2. Vidali L, Bezanilla M (2012) Physcomitrella patens: a model for tip cell growth and differentiation. Curr Opin Plant Biol 15:625–631

    Article  CAS  Google Scholar 

  3. Augustine RC, Vidali L, Kleinman KP, Bezanilla M (2008) Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J 54:863–875

    Article  CAS  Google Scholar 

  4. van Gisbergen PA, Li M, Wu SZ, Bezanilla M (2012) Class II formin targeting to the cell cortex by binding PI(3,5)P(2) is essential for polarized growth. J Cell Biol 198:235–250

    Article  Google Scholar 

  5. Vidali L, Augustine RC, Kleinman KP, Bezanilla M (2007) Profilin is essential for tip growth in the moss Physcomitrella patens. Plant Cell 19:3705–3722

    Article  CAS  Google Scholar 

  6. Vidali L, Burkart GM, Augustine RC, Kerdavid E, Tüzel E et al (2010) Myosin XI is essential for tip growth in Physcomitrella patens. Plant Cell 22:1868–1882

    Article  CAS  Google Scholar 

  7. Vidali L, van Gisbergen PAC, Guerin C, Franco P, Li M et al (2009) Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc Natl Acad Sci U S A 106:13341–13346

    Article  CAS  Google Scholar 

  8. Shen Z, Liu YC, Bibeau JP, Lemoi KP, Tüzel E et al (2015) The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens. J Integr Plant Biol 57:106–119

    Article  CAS  Google Scholar 

  9. Augustine RC, Pattavina KA, Tüzel E, Vidali L, Bezanilla M (2011) Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. Plant Cell 23:3696–3710

    Article  CAS  Google Scholar 

  10. Wu SZ, Ritchie JA, Pan AH, Quatrano RS, Bezanilla M (2011) Myosin VIII regulates protonemal patterning and developmental timing in the moss Physcomitrella patens. Mol Plant 4:909–921

    Article  CAS  Google Scholar 

  11. Ding X, Pervere LM, Bascom C Jr, Bibeau JP, Khurana S et al (2018) Conditional genetic screen in Physcomitrella patens reveals a novel microtubule depolymerizing-end-tracking protein. PLoS Genet 14:e1007221

    Article  Google Scholar 

  12. MacVeigh-Fierro D, Tüzel E, Vidali L (2017) he motor kinesin 4II is important for growth and chloroplast light avoidance in the moss Physcomitrella patens. Am J Plant Sci 8:791–809

    Article  CAS  Google Scholar 

  13. Liu YC, Vidali L (2011) Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens. J Vis Exp 50:e2560. https://doi.org/10.3791/2560

  14. Schaefer D, Zryd JP, Knight CD, Cove DJ (1991) Stable transformation of the moss Physcomitrella patens. Mol Gen Genet 226:418–424

    Article  CAS  Google Scholar 

  15. Bezanilla M, Perroud PF, Pan A, Klueh P, Quatrano RS (2005) An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes. Plant Biol (Stuttg) 7(3):251–257

    Article  CAS  Google Scholar 

  16. Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474

    Article  CAS  Google Scholar 

  17. Vidali L, Rounds CM, Hepler PK, Bezanilla M (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS One 4:e5744

    Article  Google Scholar 

  18. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  19. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD et al (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1:e10

    Article  Google Scholar 

  20. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465

    Article  CAS  Google Scholar 

  21. Smidkova M, Hola M, Angelis KJ (2010) Efficient biolistic transformation of the moss Physcomitrella patens. Biol Plant 54:777–780

    Article  CAS  Google Scholar 

  22. Sawahel W, Onde S, Knight C, Cove D (1992) Transfer of foreign DNA into Physcomitrella patens protonemal tissue by using the gene gun. Plant Mol Biol Rep 10:314–315

    Article  Google Scholar 

  23. Li LH, Yang J, Qiu HL, Liu YY (2010) Genetic transformation of Physcomitrella patens mediated by Agrobacterium tumefaciens. Afr J Biotechnol 9:3719–3725

    CAS  Google Scholar 

  24. Cho SH, Chung YS, Cho SK, Rim YW, Shin JS (1999) Particle bombardment mediated transformation and GFP expression in the moss Physcomitrella patens. Mol Cells 9:14–19

    CAS  PubMed  Google Scholar 

  25. Roberts AW, Dimos CS, Budziszek MJ Jr, Goss CA, Lai V (2011) Knocking out the wall: protocols for gene targeting in Physcomitrella patens. Methods Mol Biol 715:273–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF (IOS 1002837 and MCB 1253444 to L.V.). We thank Erin Agar, Jennifer Garbarino, and Graham Burkart for comments on the manuscript and to Luisanna Paulino for sample images. We also thank other members of the Vidali and Bezanilla laboratories for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Vidali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Galotto, G., Bibeau, J.P., Vidali, L. (2019). Automated Image Acquisition and Morphological Analysis of Cell Growth Mutants in Physcomitrella patens. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics