Skip to main content

Cellular Force Microscopy to Measure Mechanical Forces in Plant Cells

  • Protocol
  • First Online:
Plant Cell Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1992))

Abstract

Cellular force microscopy (CFM) is a noninvasive microindentation method used to measure plant cell stiffness in vivo. CFM is a scanning probe microscopy technique similar in operation to atomic force microscopy (AFM); however, the scale of movement and range of forces are much larger, making it suitable for stiffness measurements on turgid plant cells in whole organs. CFM experiments can be performed on living samples over extended time periods, facilitating the exploration of the dynamics of processes involving mechanics. Different sensor technologies can be used, along with a variety of probe shapes and sizes that can be tailored to specific applications. Measurements can be made for specific indentation depths, forces and timing, allowing for very precise mechanical stimulation of cells with known forces. High forces with sharp tips can also be used for mechanical ablation of cells with force feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cosgrove DJ (2018) Diffuse growth of plant cell walls. Plant Physiol 176:16–27

    Article  CAS  Google Scholar 

  2. Tomos AD, Leigh RA (1999) The pressure probe: a versatile tool in plant cell physiology. Annu Rev Plant Physiol Plant Mol Biol 50:447–472

    Article  CAS  Google Scholar 

  3. Vogler H, Felekis D, Nelson B, Grossniklaus U (2015) Measuring the mechanical properties of plant cell walls. Plan Theory 4:167–182

    CAS  Google Scholar 

  4. Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ et al (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 12:1132–1134

    Article  CAS  Google Scholar 

  5. Elsayad K, Werner S, Gallemí M, Kong J, Sánchez Guajardo ER et al (2016) Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission – Brillouin imaging. Sci Signal 9:1–13

    Article  Google Scholar 

  6. Schluck T, Nienhaus U, Aegerter-Wilmsen T, Aegerter CM (2013) Mechanical control of organ size in the development of the Drosophila wing disc. PLoS One 8:e76171

    Article  CAS  Google Scholar 

  7. Robinson S, Huflejt M, Barbier de Reuille P, Braybrook SA, Schorderet M et al (2017) An automated confocal micro-extensometer enables in vivo quantification of mechanical properties with cellular resolution. Plant Cell 29:2959–2973

    Article  CAS  Google Scholar 

  8. Milani P, Gholamirad M, Traas J, Arnéodo A, Boudaoud A et al (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67:1116–1123

    Article  CAS  Google Scholar 

  9. Hayot CM, Forouzesh E, Goel A, Avramova Z, Turner JA (2012) Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J Exp Bot 63:2525–2540

    Article  CAS  Google Scholar 

  10. Routier-Kierzkowska A-L, Weber A, Kochova P, Felekis D, Nelson BJ et al (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522

    Article  CAS  Google Scholar 

  11. Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  CAS  Google Scholar 

  12. Branco R, Pearsall EJ, Rundle CA, White RG, Bradby JE et al (2017) Quantifying the plant actin cytoskeleton response to applied pressure using nanoindentation. Protoplasma 254:1127–1137

    Article  CAS  Google Scholar 

  13. Fernandes AN, Chen X, Scotchford CA, Walker J, Wells DM et al (2012) Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. Phys Rev E Stat Nonlinear Soft Matter Phys 85:021916

    Article  Google Scholar 

  14. Radotić K, Roduit C, Simonović J, Hornitschek P, Fankhauser C et al (2012) Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103:386–394

    Article  Google Scholar 

  15. Majda M, Grones P, Sintorn IM, , Vain T, Milani P, et al (2017) Mechanochemical polarization of contiguous cell walls shapes plant pavement cells. Dev Cell 43:290–304.e4

    Article  CAS  Google Scholar 

  16. Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C et al (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    Article  CAS  Google Scholar 

  17. Beauzamy L, Derr J, Boudaoud A (2015) Quantifying hydrostatic pressure in plant cells by using indentation with an atomic force microscope. Biophys J 108:2448–2456

    Article  CAS  Google Scholar 

  18. Vogler H, Draeger C, Weber A, Felekis D, Eichenberger C et al (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627

    Article  CAS  Google Scholar 

  19. Felekis D, Muntwyler S, Vogler H, Beyeler F, Grossniklaus U et al (2011) Quantifying growth mechanics of living, growing plant cells in situ using microbotics. Micro Nano Lett 6:311–331

    Article  CAS  Google Scholar 

  20. Weber A, Braybrook S, Huflejt M, Mosca G, Routier-Kierzkowska AL et al (2015) Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments. J Exp Bot 66:3229–3241

    Article  CAS  Google Scholar 

  21. Hofhuis H, Moulton D, Lessinnes T, , Routier-Kierzkowska AL, Bomphrey RJ, et al (2016) Morphomechanical innovation drives explosive seed dispersal. Cell 166:222–233

    Article  CAS  Google Scholar 

  22. Mosca G, Sapala A, Strauss S, Routier-Kierzkowska AL, Smith RS (2017) On the micro-indentation of plant cells in a tissue context. Phys Biol 14(1):015003

    Article  Google Scholar 

  23. de Reuille PB, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schüpbach T et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. elife 4:1–20

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all those involved in the development of the CFM, as well as those who helped to improve the protocol. Thanks to the helpful support from Optics11 and FemtoTools. We thank Nacho Banderas for the design of the sensor holder, Ralf Equit for building the enclosure, and Dorota Czaplejewicz for helping with the programming. This work was supported by SystemX.ch, the University of Bern and the Max Planck Institute for Plant Breeding Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Majda, M., Sapala, A., Routier-Kierzkowska, AL., Smith, R.S. (2019). Cellular Force Microscopy to Measure Mechanical Forces in Plant Cells. In: Cvrčková, F., Žárský, V. (eds) Plant Cell Morphogenesis. Methods in Molecular Biology, vol 1992. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9469-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9469-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9468-7

  • Online ISBN: 978-1-4939-9469-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics