Skip to main content

Neuroprotection in Alzheimer Disease

  • Protocol
  • First Online:
The Handbook of Neuroprotection

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Alzheimer’s disease (AD) is a progressive degenerative disorder of the brain that begins with memory impairment and eventually progresses to dementia, physical impairment, and death. Patients develop various psychiatric and neurological signs in the course of the disease. The prevalence rates of dementia vary significantly in different countries but range from 2.1% to 10.5%. AD is the most common type of dementia, accounting for 50–60% of all cases and is described in detail in a special report on AD (Jain 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ADAPT Research Group. Cognitive Function Over Time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT). Arch Neurol 2008;65:896-905.

    Google Scholar 

  • Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA 2008;300:1774-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asadbegi M, Yaghmaei P, Salehi I, et al. Neuroprotective effects of metformin against Aβ-mediated inhibition of long-term potentiation in rats fed a high-fat diet. Brain Res Bull 2016;121:178-185.

    Article  CAS  PubMed  Google Scholar 

  • Atamna H, Nguyen A, Schultz C, et al. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J 2008;22:703-12.

    Article  CAS  PubMed  Google Scholar 

  • Atwal JK, Chen Y, Chiu C, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci Transl Med 2011;3:84ra43.

    Article  PubMed  CAS  Google Scholar 

  • Bakker A, Krauss GL, Albert MS, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012;74:467-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balin BJ, Hammond CJ, Little CS, et al. Chlamydia pneumoniae: An Etiologic Agent for Late-Onset Dementia. Front Aging Neurosci 2018;10:302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barini E, Antico O, Zhao Y, et al. Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy. Mol Neurodegener 2016;11:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baysal I, Yabanoglu-Ciftci S, Tunc-Sarisozen Y, Ulubayram K, Ucar G. Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils. J Neural Transm 2013;120:903-10.

    Article  CAS  PubMed  Google Scholar 

  • Becker RE, Greig NH, Lahiri DK, et al. (-)-Phenserine and Inhibiting Pre-Programmed Cell Death: In Pursuit of a Novel Intervention for Alzheimer’s Disease. Curr Alzheimer Res 2018;15:883-891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 2009;106:13594-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitner J, Baker L, Drye L,et al. Results of a follow-up study to the randomized Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT). Alzheimer’s Dement 2013;9:714-23.

    Google Scholar 

  • Busche MA, Chen X, Henning HA, et al. Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2012;109:8740-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busche MA, Grienberger C, Keskin AD, et al. Decreased amyloid-β and increased neuronal hyperactivity by immunotherapy in Alzheimer’s models. Nat Neurosci 2015;18:1725-7.

    Article  CAS  PubMed  Google Scholar 

  • Butchart J, Brook L, Hopkins V, et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology 2015;84:2161-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mTOR, A{beta} and tau: Effects on cognitive impairments. J Biol Chem 2010;285:13107-13120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadonic C, Sabbir MG, Albensi BC. Mechanisms of Mitochondrial Dysfunction in Alzheimer’s Disease. Mol Neurobiol 2016;53:6078-6090.

    Article  PubMed  CAS  Google Scholar 

  • Calon F, Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: Evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 2007;77:287-293.

    Article  CAS  PubMed  Google Scholar 

  • Cardinali DP, Vigo DE, Olivar N, et al. Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegener Dis 2012;1:280-91.

    PubMed  PubMed Central  Google Scholar 

  • Colombo E, Di Dario M, Capitolo E, et al. Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Ann Neurol 2014;76(3):325-37

    Article  CAS  PubMed  Google Scholar 

  • Crane PK, Walker R, Hubbard RA, et al. Glucose levels and risk of dementia. N Engl J Med 2013;369:540-8.

    Article  CAS  PubMed  Google Scholar 

  • Currais A, Goldberg J, Farrokhi C, et al. A comprehensive multiomics approach toward understanding the relationship between aging and dementia. Aging (Albany NY) 2015;7:937-55.

    Article  CAS  Google Scholar 

  • Davtyan H, Ghochikyan A, Petrushina I, et al. Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: prelude to a clinical trial. J Neurosci 2013;33:4923-34.

    Article  CAS  PubMed  Google Scholar 

  • De Felice FG, Vieira MN, Bomfim TM, et al. Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Aβ oligomers. PNAS 2009;106:1971-6.

    Article  CAS  Google Scholar 

  • Delrieu J, Ousset PJ, Vellas B. Gantenerumab for the treatment of Alzheimer’s disease. Expert Opin Biol Ther 2012;12:1077-86.

    Article  CAS  PubMed  Google Scholar 

  • Devi G, Scheltens P. Heterogeneity of Alzheimer’s disease: consequence for drug trials? Alzheimer’s Research & Therapy 2018;10:122.

    Google Scholar 

  • DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med 2017;9. pii: eaag0481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding K, Tarumi T, Zhu DC, et al. Cardiorespiratory Fitness and White Matter Neuronal Fiber Integrity in Mild Cognitive Impairment. J Alzheimer’s Dis 2018;61:729-39.

    Article  Google Scholar 

  • Dodge HH, Zitzelberger T, Oken BS, et al. A randomized placebo-controlled trial of ginkgo biloba for the prevention of cognitive decline. Neurology 2008;70:1809-17.

    Article  CAS  PubMed  Google Scholar 

  • Doody RS, Gavrilova SI, Sano M, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 2008;372:207-15.

    Article  CAS  Google Scholar 

  • Doody RS, Raman R, Farlow M, et al. A Phase 3 Trial of Semagacestat for Treatment of Alzheimer’s Disease. N Engl J Med 2013;369:341-50.

    Article  CAS  PubMed  Google Scholar 

  • Doody RS, Thomas RG, Farlow M, et al. Phase 3 Trials of Solanezumab for Mild-to-Moderate Alzheimer’s Disease. N Engl J Med 2014;370:311-21.

    Article  CAS  PubMed  Google Scholar 

  • Dou KX, Tan MS, Tan CC, et al. Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimer’s Research & Therapy 2018;10:126

    Google Scholar 

  • Douaud G, Refsum R, de Jager CA, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. PNAS 2013;110:9523-9528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 2014;311:33-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan MF, Kost J, Tariot PN, et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N Engl J Med 2018;378:1691-1703.

    Article  CAS  PubMed  Google Scholar 

  • El-Amouri SS, Zhu H, Yu J, Gage FH, et al. Neprilysin protects neurons against Abeta peptide toxicity. Brain Res 2007;1152:191-200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink HA, Jutkowitz E, McCarten JR, et al. Pharmacologic Interventions to Prevent Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer-Type Dementia: A Systematic Review. Ann Intern Med 2018;168:39-51.

    Article  PubMed  Google Scholar 

  • Fleisher AS, Raman R, Siemers ER, et al. Phase 2 safety trial targeting Aβ production with a γ-secretase inhibitor in Alzheimer disease. Arch Neurol 2008;65:1031-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fol R, Braudeau J, Ludewig S, et al. Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer’s disease mouse model. Acta Neuropathol 2016;131:247-66.

    Article  PubMed  CAS  Google Scholar 

  • Freund Levi Y, Vedin I, Cederholm T, et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: the OmegAD study. J Intern Med 2014;275:428-36.

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto K, Mizoguchi H, Takeuchi H, et al. Fingolimod increases brain-derived neurotrophic factor levels and ameliorates amyloid β-induced memory impairment. Behav Brain Res 2014;268:88-93.

    Article  CAS  PubMed  Google Scholar 

  • Ghosal K, Vogt DL, Liang M, et al. Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. PNAS 2009;106:18367-77.

    Article  CAS  Google Scholar 

  • Gidicsin CM, Maye JE, Locascio JJ, et al. Cognitive activity relates to cognitive performance but not to Alzheimer disease biomarkers. Arch Neurol 2015;85:48-55.

    CAS  Google Scholar 

  • Green KN, Steffan JS, Martinez-Coria H, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 2008;2:11500-10.

    Article  CAS  PubMed  Google Scholar 

  • Griffin WS. Neuroinflammatory Cytokine Signaling and Alzheimer’s Disease. N Engl J Med 2013;368:770-1.

    Article  CAS  PubMed  Google Scholar 

  • Griffin WS. Perispinal etanercept: potential as an Alzheimer therapeutic. J Neuroinflammation 2008;5:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimaldi LM, Zappalà G, Iemolo F, et al. A pilot study on the use of interferon beta-1a in early Alzheimer’s disease subjects. J Neuroinflammation 2014;11:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimm MO, Mett J, Stahlmann CP, et al. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression. Front Aging Neurosci 2015;7:77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Habchi J, Arosio P, Perni M, et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer’s disease. Science Advances 2016;2:e1501244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamilton LK, Dufresne M, Joppé SE, et al. Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer’s Disease. Cell Stem Cell 2015;17:397-411.

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Revesz T. The Spread of Neurodegenerative Disease. NEJM 2012;366:2126-28.

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Bogdanovic N, Winblad B, et al. Pathways to Alzheimer’s disease. J Int Med 2014;275:296-303.

    Article  CAS  PubMed  Google Scholar 

  • Hattiangady B, Shuai B, Cai J, et al. Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus. Stem Cells 2007;25:2104-17.

    Article  PubMed  Google Scholar 

  • Hedskog L, Pinho CM, Filadi R, et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci U S A 2013;110:7916-21.

    Article  CAS  Google Scholar 

  • Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 2009;6:31.

    Article  CAS  Google Scholar 

  • Henderson VW, Ala T, Sainani KL, et al. Raloxifene for women with Alzheimer disease: A randomized controlled pilot trial. Neurology 2015;85:1937-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honig LS, Vellas B, Woodward M, et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N Engl J Med 2018; 378:321-30.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Lu C, Sun Y, et al. Multitarget-directed benzylideneindanone derivatives: anti-β-amyloid (Aβ) aggregation, antioxidant, metal chelation, and monoamine oxidase B (MAO-B) inhibition properties against Alzheimer’s disease. J Med Chem 2012;55:8483-92.

    Article  CAS  PubMed  Google Scholar 

  • Hyung SJ, DeToma AS, Brende JR, et al. Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc Natl Acad Sci U S A 2013;110:3743-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 2013;123:1299-309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imbimbo BP, Panza F, Frisardi V, et al. Therapeutic intervention for Alzheimer’s disease with γ-secretase inhibitors: still a viable option? Expert Opin Invest Drugs 2011;20:325-41.

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki RF. Herpes simplex virus type 1 and Alzheimer’s disease: increasing evidence for a major role of the virus. Front Aging Neurosci 2014;6:202.

    Google Scholar 

  • Jaeger LB, Dohgu S, Sultana R, et al. Lipopolysaccharide Alters the Blood-brain Barrier Transport of Amyloid Beta Protein: A Mechanism for Inflammation in the Progression of Alzheimer’s Disease. Brain Behav Immun 2009;23:507-17.

    Google Scholar 

  • Jain KK. Alzheimer Disease: new drugs, markets, and companies. Jain PharmaBiotech Publications, Basel, Switzerland, 2019e.

    Google Scholar 

  • Jain KK. Fingolimod. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019c.

    Google Scholar 

  • Jain KK. Gene Therapy: technologies, companies and markets. Jain PharmaBiotech Publications, Basel, 2019.

    Google Scholar 

  • Jain KK. Interferon beta-1a. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019d.

    Google Scholar 

  • Jain KK. Memantine. In, Roos RP (ed) MedLink Neurology. Medlink Publishing Corporation, San Diego, California, 2019a.

    Google Scholar 

  • Jain KK. Nitric Oxide Therapeutics. Jain PharmaBiotech Publications, Basel, 2019b.

    Google Scholar 

  • Jain KK. Drug Delivery in CNS Disorders. Jain PharmaBiotech Publications, Basel, 2019f.

    Google Scholar 

  • Johnson VE, Stewart W, Graham DI, et al. A Neprilysin Polymorphism and Amyloid-β Plaques after Traumatic Brain Injury. J Neurotrauma 2009;26:1197-1202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson L, Guo X, Duberstein PR, et al. Midlife personality and risk of Alzheimer disease and distress: A 38-year follow-up. Neurology 2014;83:1538-44.

    Article  PubMed  Google Scholar 

  • Jung JS, Shin KO, Lee YM, et al. Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia. Biochim Biophys Acta 2013;1831:1016-26.

    Article  CAS  PubMed  Google Scholar 

  • Kang JE, Lim MM, Bateman RJ, et al. Amyloid-{beta} Dynamics Are Regulated by Orexin and the Sleep-Wake Cycle. Science 2009;326:1005-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014;344:630-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman AC, Salazar SV, Haas LT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol 2015;77:953-71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keskin AD, Kekuš M, Adelsberger H, et al. BACE inhibition-dependent repair of Alzheimer’s pathophysiology. Proc Natl Acad Sci U S A 2017;114:8631-8636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirste T, Hoffmeyer A, Koldrack P, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alz Dis 2014;38:121-32.

    Article  Google Scholar 

  • Kiyota T, Ingraham KL, Jacobsen MT, et al. FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc Natl Acad Sci U S A 2011;108:E1339-48.

    Article  CAS  Google Scholar 

  • Kiyota T, Machhi J, Lu Y, et al. Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer’s disease mice. J Neuroimmunol 2018;319:80-92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukar TL, Ladd TB, Bann MA, et al. Substrate-targeting big gamma-secretase modulators. Nature 2008;453:925-929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor B, Segurado R, Kennelly S, et al. Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. PLoS Med 2018;15(9): e1002660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Siddoway B, Kaeser GE, et al. Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 2018;563:639-645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesne S. Toxic oligomer species of amyloid-β in Alzheimer’s disease, a timing issue. Swiss Med Wkly 2014;144:w14021.

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang J, Liu J, Liu F. A novel system for in vivo neprilysin gene delivery using a syringe electrode. J Neurosci Methods 2010;193:226-31.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang J, Zhang S, Liu Z. Neprilysin gene transfer: A promising therapeutic approach for Alzheimer’s disease. J Neurosci Res 2015;93:1325-9.

    Article  CAS  PubMed  Google Scholar 

  • Lim C, Hammond CJ, Hingley ST, Balin BJ. Chlamydia pneumoniae infection of monocytes in vitro stimulates innate and adaptive immune responses relevant to those in Alzheimer’s disease. J Neuroinflammation 2014;11:217.

    Google Scholar 

  • Liu G, Men P, Zhu X, Perry G. Iron chelation and nanoparticle target delivery in the development of new multifunctional disease-modifying drugs for Alzheimer’s disease. Ther Deliv 2012a;3:571-4.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7:e31302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonskaya I, Hebron ML, Desforges NM, et al. Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J Mol Med (Berl) 2014;92:373-86.

    Article  CAS  Google Scholar 

  • Lorenzi M, Altmann A, Gutman B, et al. Susceptibility of brain atrophy to TRIB3 in Alzheimer’s disease, evidence from functional prioritization in imaging genetics. Proc Natl Acad Sci U S A 2018;115:3162-3167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu T, Aron L, Zullo J, et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature 2014;507:448-54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luchsinger JA, Tang MX, Miller J, et al. Relation of Higher Folate Intake to Lower Risk of Alzheimer Disease in the Elderly. Arch Neurol 2007;64:86-92.

    Article  PubMed  Google Scholar 

  • Lunnon K, Keohane A, Pidsley R, et al. Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol Aging 2017;53:36-47.

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Lin YX, Yang PP, et al. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat Commun 2018;9:1802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mander BA, Marks SM, Vogel JW, et al. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 2015;18:1051-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapstone M, Dickerson K, Duffy CJ. Distinct mechanisms of impairment in cognitive ageing and Alzheimer’s disease. Brain 2008;131(Pt 6):1618-29.

    Article  PubMed  Google Scholar 

  • Martins YA, Tsuchida CJ, Antoniassi P, Demarchi IG. Efficacy and Safety of the Immunization with DNA for Alzheimer’s Disease in Animal Models: A Systematic Review from Literature. J Alzheimer’s Dis Rep 2017;1:195-217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martorana A, Di Lorenzo F, Esposito Z, et al. Dopamine D2-agonist rotigotine effects on cortical excitability and central cholinergic transmission in Alzheimer’s disease patients. Neuropharmacology 2013;64:108-13.

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga S, Kishi T, Iwata N. Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One 2015;10:e0123289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merlo S, Spampinato SF, Sortino MA. Estrogen and Alzheimer’s disease: Still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 2017;817:51-58.

    Article  CAS  PubMed  Google Scholar 

  • Michaud JP, Hallé M, Lampron A, et al. Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci U S A 2013;110:1941-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nativio R, Donahue G, Berson A, et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci 2018;21:497-505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Callaghan N, Parletta N, Milte CM, et al. Telomere shortening in elderly people with mild cognitive impairment may be attenuated with omega-3 fatty acid supplementation: A randomised controlled pilot study. Nutrition 2014;30:489-91.

    Article  PubMed  CAS  Google Scholar 

  • Ofengeim D, Mazzitelli Y, Ito Y. RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci U S A 2017;114:E8788-E8797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Yanazawa M, Sasahara T, et al. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly. Proc Natl Acad Sci U S A 2015;112:E4465-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrowitzki S, Deptula D, Thurfjell L, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 2012;69:198-207.

    Article  PubMed  Google Scholar 

  • Peng CX, Hu J, Liu D, et al. Disease-modified glycogen synthase kinase-3β intervention by melatonin arrests the pathology and memory deficits in an Alzheimer’s animal model. Neurobiol Aging 2013;34:1555-63.

    Article  CAS  PubMed  Google Scholar 

  • Piirainen S, Youssef A, Song C, et al. Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer’s disease: the emerging role for microglia? Neurosci Biobehav Rev 2017;77:148-164.

    Article  CAS  Google Scholar 

  • Pul R, Dodel R, Stangel M. Antibody-based therapy in Alzheimer’s disease. Expert Opin Biol Ther 2011;11:343-57.

    Article  CAS  PubMed  Google Scholar 

  • Rdzak GM, Abdelghany O. Does insulin therapy for type 1 diabetes mellitus protect against Alzheimer’s disease? Pharmacotherapy 2014;34:1317-23.

    Google Scholar 

  • Reinders NR, Pao Y, Renner MC, et al. Amyloid-β effects on synapses and memory require AMPA receptor subunit GluA3. Proc Natl Acad Sci U S A 2016;113:E6526-E6534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribe EM, Lovestone S. Insulin signalling in Alzheimer’s disease and diabetes: from epidemiology to molecular links. J Intern Med 2016;280:430-442.

    Article  CAS  PubMed  Google Scholar 

  • Ringman JM, Frautschy SA, Teng E, et al. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer’s Res Ther 2012;4:43.

    Article  CAS  Google Scholar 

  • Rodríguez-Rodríguez C, Sánchez de Groot N, Rimola A, et al. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease. J Am Chem Soc 2009;131:1436-51.

    Google Scholar 

  • Roman MW. Axona (Accera, Inc): a new medical food therapy for persons with Alzheimer’s disease. Issues Ment Health Nurs 2010;31(6):435-6.

    Google Scholar 

  • Rosenberg RN, Fu M, Lambracht-Washington D. Active full-length DNA Aβ42 immunization in 3xTg-AD mice reduces not only amyloid deposition but also tau pathology. Alzheimer’s Res Ther 2018;10:115.

    Google Scholar 

  • Ross J, Sharma S, Winston J, et al. CHF5074 reduces biomarkers of neuroinflammation in patients with mild cognitive impairment: a 12-week, double-blind, placebo-controlled study. Curr Alzheimer Res 2013;10:742-53.

    Article  CAS  PubMed  Google Scholar 

  • Rygiel K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer’s disease? An overview of research evidence in the elderly patient population. J Postgrad Med 2016;62:242-248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez PE, Zhu L, Verret L, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A 2012;109:E2895-903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens P, Kamphuis JG, Verhey FR, et al. Efficacy of a medical food in mild Alzheimer’s disease: A randomized, controlled trial. Alzheimer’s & Dementia 2010;6:1-10.

    Google Scholar 

  • Serneels L, Van Biervliet J, Craessaerts K, et al. Gamma-secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 2009;324:639-42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siemers ER, Friedrich S, Dean RA, et al. Safety and changes in plasma and cerebrospinal fluid amyloid beta after a single administration of an amyloid beta monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharmacol 2010;33:67-73.

    Article  CAS  PubMed  Google Scholar 

  • Simmons DA, Knowles JK, Belichenko NP, et al. LM11A-31, reverses cholinergic neurite dystrophy in Alzheimer’s disease mouse models with mid- to late-stage disease progression. PLoS One 2014;9:e102136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith AD, Smith SM, de Jager CA, et al. Homocysteine-Lowering by B Vitamins Slows the Rate of Accelerated Brain Atrophy in Mild Cognitive Impairment: A Randomized Controlled Trial. PLoS ONE 2010:5(9): e12244. doi:https://doi.org/10.1371/journal.pone.0012244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snitz BE, O’Meara ES, Carlson Mc, et al. Ginkgo biloba for Preventing Cognitive Decline in Older Adults. JAMA 2009;302:2663-70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotthibundhu A, Sykes AM, Fox B, et al. Beta-amyloid(1-42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci 2008;28:3941-6.

    Google Scholar 

  • Squitti R, Bressi F, Pasqualetti P, et. al. Longitudinal prognostic value of serum “free” copper in patients with Alzheimer’s disease. Neurology 2009;72:50-5.

    Article  CAS  PubMed  Google Scholar 

  • Suberbielle E, Sanchez PE, Kravitz AV, et al. Physiologic neuron activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-ß. Nat Neurosci 2013;16:613-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szaniszlo P, German P, Hajas G, et al. New insights into clinical trial for Colostrinin in Alzheimer’s disease. J Nutr Health Aging 2009;13:235-41.

    Article  CAS  PubMed  Google Scholar 

  • Takata K, Kitamura Y, Saeki M, et al. Galantamine-induced amyloid-{beta} clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 2010;285:40180-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariot PN, Schneider LS, Cummings J, et al. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch Gen Psychiatry 2011;68:853-61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobinick E. Perispinal etanercept for neuroinflammatory disorders. Drug Discov Today 2009;14:168-177.

    Article  CAS  PubMed  Google Scholar 

  • Tobinick EL, Gross H. Rapid improvement in verbal fluency and aphasia following perispinal etanercept in Alzheimer’s disease. BMC Neurology 2008;8:27.

    Google Scholar 

  • Trepanier CH, Milgram NW. Neuroinflammation in Alzheimer’s disease: are NSAIDs and selective COX-2 inhibitors the next line of therapy? J Alzheimers Dis 2010;21:1089–99.

    Article  CAS  PubMed  Google Scholar 

  • Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015;85:1383-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005;11:551-5.

    Article  CAS  PubMed  Google Scholar 

  • Tuszynski MH, Yang JH, Barba D, et al. Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 2015;72:1139-47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuszynski MH. Nerve growth factor gene therapy in Alzheimer disease. Alzheimer Dis Assoc Disord 2007;21:179-89.

    Article  CAS  PubMed  Google Scholar 

  • Velazquez R, Ferreira E, Winslow W, et al. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol Psychiatry 2019 Jan 8;doi: https://doi.org/10.1038/s41380-018-0322-z. [Epub ahead of print]

  • Villeda SA, Plambeck KE, Middeldorp, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 2014;20:659-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlassenko AG, Vaishnavi SN, Couture L, et al. Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. PNAS 2010;107:17763-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vom Berg J, Prokop S, Miller KR, et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med 2012;18:1812-9.

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Finstad CL, Walfield AM, et al. Site-specific UBITh® amyloid-vaccine for immunotherapy of Alzheimer’s disease. Vaccine 2007;25:3041-52.

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Wang PN, Chiu MJ, et al. UB-311, a novel UBITh® amyloid β peptide vaccine for mild Alzheimer’s disease. Alzheimers Dement (N Y) 2017;3:262-272

    Google Scholar 

  • Wang K, Fernandez-Escobar A, Han S, Zhu P, et al. Lamotrigine Reduces Inflammatory Response and Ameliorates Executive Function Deterioration in an Alzheimer’s-Like Mouse Model. Biomed Res Int 2016;2016:7810196.

    Google Scholar 

  • Watanabe M, Kang YJ, Davies LM, et al. BMP4 Sufficiency to Induce Choroid Plexus Epithelial Fate from Embryonic Stem Cell-Derived Neuroepithelial Progenitors. J Neurosci 2012;32:15934-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Youdim MB. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 2012;13:483-94.

    Article  CAS  PubMed  Google Scholar 

  • Wolozin B, Wang SW, Li NC, et al. Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med 2007;5:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu W, Tan L, Wang HF, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2015;pii: jnnp-2015-310548.

    Google Scholar 

  • Xue YH, Peng YS, Ting HF, et al. Etoricoxib and Diclofenac Might Reduce the Risk of Dementia in Patients with Osteoarthritis: A Nation-Wide, Population-Based Retrospective Cohort Study. Dement Geriatr Cogn Disord 2018;45:262-271.

    Article  PubMed  Google Scholar 

  • Yassine HN, Rawat V, Mack WJ, et al. The effect of APOE genotype on the delivery of DHA to cerebrospinal fluid in Alzheimer’s disease. Alzheimer’s Res Ther 2016;8:25.

    Google Scholar 

  • Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 2011;3(84):84ra44.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Liu A, Wang ZJ, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer’s disease. Brain 2019 Jan 22; doi: https://doi.org/10.1093/brain/awy354.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Gennatas ED, Kramer JH, et al. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 2012;73:1216-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jain, K.K. (2019). Neuroprotection in Alzheimer Disease. In: The Handbook of Neuroprotection. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9465-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9465-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9464-9

  • Online ISBN: 978-1-4939-9465-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics