Skip to main content

Imaging of Intracellular Hydrogen Peroxide Production with HyPer upon Stimulation of HeLa Cells with EGF

  • Protocol
  • First Online:
Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1990))

Abstract

Reactive oxygen species (ROS) regulate both normal cell functions by activating a number of enzymatic cascades and pathological processes in many diseases by inducing oxidative stress. For many years since the discovery of ROS in biological systems there were no adequate methods of detection and quantification of these molecules inside the living cells. We developed the first genetically encoded fluorescent indicator for intracellular detection of hydrogen peroxide, HyPer, that can be used for imaging of H2O2 production by cells under various physiological and pathological conditions. Unlike most known ROS indicators, HyPer allows for the generation of real-time image series that give precise information about the time course and intensity of H2O2 changes in any compartment of interest. In this chapter we describe the method of confocal imaging of hydrogen peroxide production in HeLa cells upon stimulation with epidermal growth factor. The technique described may be accepted with minimal variations for the use in other cell lines upon various conditions leading to H2O2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  Google Scholar 

  2. Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145–157

    Article  CAS  Google Scholar 

  3. Marchesi E, Rota C, Fann YC, Chignell CF, Mason RP (1999) Photoreduction of the fluorescent dye 2′-7′-dichlorofluorescein: a spin trapping and direct electron spin resonance study with implications for oxidative stress measurements. Free Radic Biol Med 26:148–161

    Article  CAS  Google Scholar 

  4. Rota C, Fann YC, Mason RP (1999) Phenoxyl free radical formation during the oxidation of the fluorescent dye 2′,7′-dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements. J Biol Chem 274:28161–28168

    Article  CAS  Google Scholar 

  5. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286

    Article  CAS  Google Scholar 

  6. Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721

    Article  CAS  Google Scholar 

  7. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, Ryu S (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the European Commission (FP-6 Integrated Project LSHG-CT-2003-503259), the Russian Academy of Sciences Program in Molecular and Cell Biology, the Russian Foundation for Basic Research (Project 05-04-49316), the National Institutes of Health (GM070358), and the Howard Hughes Medical Institute grant HHMI 55005618.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Markvicheva, K.N., Bogdanova, E.A., Staroverov, D.B., Lukyanov, S., Belousov, V.V. (2019). Imaging of Intracellular Hydrogen Peroxide Production with HyPer upon Stimulation of HeLa Cells with EGF. In: Hancock, J., Conway, M. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology, vol 1990. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9463-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9463-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9461-8

  • Online ISBN: 978-1-4939-9463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics