Skip to main content

Methods for the Addition of Redox Compounds

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1990))

Abstract

Often in redox biology experiments there is a need to add compounds which impinge on the redox of the cellular environment cell. Such compounds may include reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), reactive nitrogen species such as nitric oxide (NO), hydrogen sulfide (H2S), or even hydrogen gas (H2). It is not always easy or obvious how such compounds should be used. Gases may be supplied and used in the gaseous form, but this is often not convenient. Alternative methods may involve donor molecules that release into solution the relevant compound, but the actual compound released needs to be considered, along with the kinetics of that release and the by-products that might be remain. Therefore, the method of delivery of redox active compounds needs to have careful consideration before more complex experiments are undertaken. This chapter covers some of the more common methods employed and discusses some of the pros and cons of such methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hancock JT (2009) The role of redox mechanisms in cell signalling. Mol Biotechnol 43:162–166

    Article  CAS  Google Scholar 

  2. Hancock JT (2017) Harnessing evolutionary toxins for signaling: reactive oxygen species, nitric oxide and hydrogen sulfide in plant cell regulation. Front Plant Sci 8:189

    Article  Google Scholar 

  3. Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee? Plant Physiol Biochem 78:37–42

    Article  CAS  Google Scholar 

  4. Hancock JT, Craig T, Whiteman M (2017) Competition of reactive signals and thiol modifications of proteins. J Cell Signal 2:170

    Article  Google Scholar 

  5. Shetty NP, Lyngs Jorgensen HJ, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280

    Article  CAS  Google Scholar 

  6. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  Google Scholar 

  7. Jeandroz S, Wipf D, Stuejr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9(417):re2

    Article  Google Scholar 

  8. Neill S, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  9. Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signaling molecule? Plant Cell Environ 36:1607–1616

    Article  CAS  Google Scholar 

  10. Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci U S A 104:20618–20622

    Article  CAS  Google Scholar 

  11. Wilson HR, Veal D, Whiteman M, Hancock JT (2017) Hydrogen gas and its role in cell signaling. CAB Rev 12:1–3

    Article  Google Scholar 

  12. Li HM, Shen L, Ge JW, Zhang RF (2018) The transfer of hydrogen from inert gas to therapeutic gas. Med Gas Res 7:265–272

    PubMed  PubMed Central  Google Scholar 

  13. Zeng J, Ye Z, Sun X (2014) Progress in the study of biological effects of hydrogen on higher plants and its promising application in agriculture. Med Gas Res 4:15

    Article  Google Scholar 

  14. Thomas DD, Miranda KM, Espey MG, Citrin D, Jourd’Heuil D, Paolocci N, Hewett SJ, Colton CA, Grisham MB, Feelisch M, Wink DA (2002) Guide for the use of nitric oxide (NO) donors s probes of the chemistry of NO and related redox species in biological systems. Methods Enzymol 359:84–105

    Article  CAS  Google Scholar 

  15. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

    Article  CAS  Google Scholar 

  16. Szczesny B, Modis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whitemna M, Szabo C (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide 41:120–130

    Article  CAS  Google Scholar 

  17. Cross AR, Parkinson JF, Jones OT (1984) The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations. Biochem J 223:337–344

    Article  CAS  Google Scholar 

  18. Oh H, Siano B, Diamond S (2008) Neutrophil isolation protocol. J Vis Exp 17:745

    Google Scholar 

  19. Uy B, McGlashan SR, Shaikh SB (2011) Measurement of reactive oxygen species in the culture media using Acridin Lumingen PS-3 assay. J Biomol Tech 22:95–107

    PubMed  PubMed Central  Google Scholar 

  20. Zacharia IG, Deen WM (2005) Diffusivity and solubility of nitric oxide in water and saline. Ann Biomed Eng 33:214–222

    Article  Google Scholar 

  21. Bethke PC, Libourell IG, Reinohl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  CAS  Google Scholar 

  22. Mata-Perez C, Sanchez-Calvo B, Padilla MN, Begara-Morales JC, Valderrama R, Corpas FJ, Barroso JB (2017) Nitro-fatty acids in plant signaling: new key mediators of nitric oxide metabolism. Redox Biol 11:554–561

    Article  CAS  Google Scholar 

  23. Gupta KJ, Igamberdiev AU (2013) Recommendations of using at least two different methods for measuring NO. Front Plant Sci 4:58

    Article  CAS  Google Scholar 

  24. Zhao Y, Biggs TD, Xian M (2014) Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 50:11788–11805

    Article  CAS  Google Scholar 

  25. Lee JL, Mather AE (1977) Solubility of hydrogen sulfide in water. Ber Bunsenges Phys Chem 81:1020–1023

    Article  CAS  Google Scholar 

  26. Lisjak M, Teklic T, Wilson ID, Wood ME, Whiteman M, Hancock JT (2011) Hydrogen sulfide effects on stomatal apertures. Plant Signal Behav 6:1444–1446

    Article  CAS  Google Scholar 

  27. Lee ZW, Zhou J, Chen C-S, Zhao Y, Tan C-H, Li L, Moore PK, Deng L-W (2011) The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS One 6:e21077

    Article  CAS  Google Scholar 

  28. Shen X, Kolluru GK, Yuan S, Kevil CG (2015) Measurement of H2S in vivo and in vitro by the monobromobimane method. Methods Enzymol 554:31–45

    Article  CAS  Google Scholar 

  29. Renwick GM, Giumarro C, Siegel SM (1964) Hydrogen metabolism in higher plants. Plant Physiol 39:303–306

    Article  CAS  Google Scholar 

  30. Molecular Hydrogen Foundation: www.molecularhydrogenfoundation.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Hancock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hancock, J.T. (2019). Methods for the Addition of Redox Compounds. In: Hancock, J., Conway, M. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology, vol 1990. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9463-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9463-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9461-8

  • Online ISBN: 978-1-4939-9463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics