Skip to main content

Quantitating MHC Class I Ligand Production and Presentation Using TCR-Like Antibodies

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1988))

Abstract

Accurately determining the number of peptide–MHC class I complexes on the cell surface is necessary when evaluating cellular processes or pharmaceuticals that alter the antigen presentation machinery. Here I describe a quantitative flow cytometry application for determining the number of peptide–MHC complexes on the surface of cells grown in tissue culture that express an endogenous protein from which the peptide is derived. The procedure requires a monoclonal antibody with the ability to distinguish MHC class I molecules presenting the peptide of interest from other peptide–MHC complexes. Fluorescence signal measured on antibody-labeled cells can be compared to fluorescent-calibrated beads to determine the relative number of antibodies bound to the cell surface and hence the number of specific peptide–MHC complexes expressed by the cell. As new monoclonal antibodies with TCR-like specificity for peptide–MHC complexes are created, this method will be helpful in quantifying the exact numbers of complexes generated by cell types and relating these numbers to physiological outcomes of T cell activation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Del Val M, Iborra S, Ramos M, Lázaro S (2011) Generation of MHC class I ligands in the secretory and vesicular pathways. Cell Mol Life Sci 68(9):1543–1552. https://doi.org/10.1007/s00018-011-0661-2

    Article  CAS  PubMed  Google Scholar 

  2. Sijts EJAM, Kloetzel P-M (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci 68(9):1491–1502. https://doi.org/10.1007/s00018-011-0657-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Endert P (2011) Post-proteasomal and proteasome-independent generation of MHC class I ligands. Cell Mol Life Sci 68(9):1553–1567. https://doi.org/10.1007/s00018-011-0662-1

    Article  CAS  PubMed  Google Scholar 

  4. Fortier M-H, Caron É, Hardy M-P, Voisin G, Lemieux S, Perreault C, Thibault P (2008) The MHC class I peptide repertoire is molded by the transcriptome. J Exp Med 205(3):595–610. https://doi.org/10.1084/jem.20071985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker H-D, Rammensee H-G, Stevanović S (2004) Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat Biotechnol 22:450. https://doi.org/10.1038/nbt947

    Article  CAS  PubMed  Google Scholar 

  6. Pang KC, Wei JQZ, Chen W (2006) Dynamic quantification of MHC class I–peptide presentation to CD8+ T cells via intracellular cytokine staining. J Immunol Methods 311(1–2):12–18. https://doi.org/10.1016/j.jim.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  7. Tan CT, Croft NP, Dudek NL, Williamson NA, Purcell AW (2011) Direct quantitation of MHC-bound peptide epitopes by selected reaction monitoring. Proteomics 11(11):2336–2340. https://doi.org/10.1002/pmic.201000531

    Article  CAS  PubMed  Google Scholar 

  8. Villanueva MS, Fischer P, Feen K, Pamer EG (1994) Efficiency of MHC class I antigen processing: a quantitative analysis. Immunity 1(6):479–489. https://doi.org/10.1016/1074-7613(94)90090-6

    Article  CAS  PubMed  Google Scholar 

  9. Croft NP, Purcell AW, Tscharke DC (2015) Quantifying epitope presentation using mass spectrometry. Mol Immunol 68(2, Part A):77–80. https://doi.org/10.1016/j.molimm.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  10. Princiotta MF, Finzi D, Qian SB, Gibbs J, Schuchmann S, Buttgereit F, Bennink JR, Yewdell JW (2003) Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18(3):343–354

    Article  CAS  Google Scholar 

  11. Wherry EJ, Puorro KA, Porgador A, Eisenlohr LC (1999) The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained. J Immunol 163(7):3735–3745

    CAS  PubMed  Google Scholar 

  12. Wolf BJ, Princiotta MF (2013) Processing of recombinant Listeria monocytogenes proteins for MHC class I presentation follows a dedicated, high-efficiency pathway. J Immunol 190(6):2501–2509. https://doi.org/10.4049/jimmunol.1201660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cram ED, Simmons RS, Palmer AL, Hildebrand WH, Rockey DD, Dolan BP (2016) Enhanced direct major histocompatibility complex class I self-antigen presentation induced by chlamydia infection. Infect Immun 84(2):480–490. https://doi.org/10.1128/iai.01254-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN (1997) Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6(6):715–726

    Article  CAS  Google Scholar 

  15. Kim S, Li L, McMurtrey CP, Hildebrand WH, Weidanz JA, Gillanders WE, Diamond MS, Hansen TH (2010) Single-chain HLA-A2 MHC trimers that incorporate an immundominant peptide elicit protective T cell immunity against lethal West Nile virus infection. J Immunol 184(8):4423–4430. https://doi.org/10.4049/jimmunol.0903955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma B, Hawkins OE, Neethling FA, Caseltine SL, Largo SR, Hildebrand WH, Weidanz JA (2010) Direct discovery and validation of a peptide/MHC epitope expressed in primary human breast cancer cells using a TCRm monoclonal antibody with profound antitumor properties. Cancer Immunol Immunother 59(4):563–573. https://doi.org/10.1007/s00262-009-0774-8

    Article  CAS  PubMed  Google Scholar 

  17. Makler O, Oved K, Netzer N, Wolf D, Reiter Y (2010) Direct visualization of the dynamics of antigen presentation in human cells infected with cytomegalovirus revealed by antibodies mimicking TCR specificity. Eur J Immunol 40(6):1552–1565. https://doi.org/10.1002/eji.200939875

    Article  CAS  PubMed  Google Scholar 

  18. Epel M, Carmi I, Soueid-Baumgarten S, Oh SK, Bera T, Pastan I, Berzofsky J, Reiter Y (2008) Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies. Eur J Immunol 38(6):1706–1720. https://doi.org/10.1002/eji.200737524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nunoya J, Nakashima T, Kawana-Tachikawa A, Kiyotani K, Ito Y, Sugimura K, Iwamoto A (2009) Short communication: generation of recombinant monoclonal antibodies against an immunodominant HLA-A*2402-restricted HIV type 1 CTL epitope. AIDS Res Hum Retrovir 25(9):897–904. https://doi.org/10.1089/aid.2009.0036

    Article  CAS  PubMed  Google Scholar 

  20. Bazzone LE, Smith PM, Rutitzky LI, Shainheit MG, Urban JF, Setiawan T, Blum AM, Weinstock JV, Stadecker MJ (2008) Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis. Infect Immun 76(11):5164–5172. https://doi.org/10.1128/IAI.00673-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sojung K, PA K, MN B, Oriana H, Krysten D, Saghar K, Jason N, BM J, WJ A, HW H, DM S, HT H (2014) A novel T-cell receptor mimic defines dendritic cells that present an immunodominant West Nile virus epitope in mice. Eur J Immunol 44(7):1936–1946. https://doi.org/10.1002/eji.201444450

    Article  CAS  Google Scholar 

  22. Mareeva T, Lebedeva T, Anikeeva N, Manser T, Sykulev Y (2004) Antibody specific for the peptide·major histocompatibility complex: is it T cell receptor-like? J Biol Chem 279(43):44243–44249. https://doi.org/10.1074/jbc.M407021200

    Article  CAS  PubMed  Google Scholar 

  23. Dolan BP, Li L, Veltri CA, Ireland CM, Bennink JR, Yewdell JW (2011) Distinct pathways generate peptides from defective ribosomal products for CD8+ T cell immunosurveillance. J Immunol 186(4):2065–2072. https://doi.org/10.4049/jimmunol.1003096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grant R01AI130059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Dolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dolan, B.P. (2019). Quantitating MHC Class I Ligand Production and Presentation Using TCR-Like Antibodies. In: van Endert, P. (eds) Antigen Processing. Methods in Molecular Biology, vol 1988. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9450-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9450-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9449-6

  • Online ISBN: 978-1-4939-9450-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics