Skip to main content

Purification of Large Cytosolic Proteases for In Vitro Assays: 20S and 26S Proteasomes

  • Protocol
  • First Online:
Antigen Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1988))

  • 2331 Accesses

Abstract

Proteasomes are the main cytosolic proteases responsible for generating peptides for antigen processing and presentation in the MHC (major histocompatibility complex) class-I pathway. Purified 20S and 26S proteasomes have been widely used to study both specificity and efficiency of antigen processing. Here, we describe the purification of active human 20S and 26S proteasomes from human erythrocytes by DEAE-ion exchange chromatography, ammonium sulfate precipitation, glycerol density gradient centrifugation, and Superose-6 size exclusion chromatography and their characterization using fluorogenic substrates and specific inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciechanover A (2017) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Pract Res Clin Haematol 30(4):341–355. https://doi.org/10.1016/j.beha.2017.09.001

    Article  PubMed  Google Scholar 

  2. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169(5):792–806. https://doi.org/10.1016/j.cell.2017.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429(22):3500–3524. https://doi.org/10.1016/j.jmb.2017.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Basler M, Kirk CJ, Groettrup M (2013) The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol 25(1):74–80. https://doi.org/10.1016/j.coi.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Tenzer S, Stoltze L, Schonfisch B, Dengjel J, Muller M, Stevanovic S, Rammensee HG, Schild H (2004) Quantitative analysis of prion-protein degradation by constitutive and immuno-20S proteasomes indicates differences correlated with disease susceptibility. J Immunol 172(2):1083–1091

    Article  CAS  PubMed  Google Scholar 

  6. Lázaro S, Gamarra D, Del Val M (2015) Proteolytic enzymes involved in MHC class I antigen processing: a guerrilla army that partners with the proteasome. Mol Immunol 68(2 Pt A):72–76. https://doi.org/10.1016/j.molimm.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  7. Liepe J, Marino F, Sidney J, Jeko A, Bunting DE, Sette A, Kloetzel PM, Stumpf MP, Heck AJ, Mishto M (2016) A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354(6310):354–358

    Article  CAS  PubMed  Google Scholar 

  8. Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ (2017) Peptide splicing by the proteasome. J Biol Chem 292(51):21170–21179. https://doi.org/10.1074/jbc.R117.807560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stratikos E, Stern LJ (2013) Antigenic peptide trimming by ER aminopeptidases—insights from structural studies. Mol Immunol 55(3–4):212–219. https://doi.org/10.1016/j.molimm.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, Moeller A, Tampé R (2017) Structure of the human MHC-I peptide-loading complex. Nature 551(7681):525–528. https://doi.org/10.1038/nature24627

    Article  CAS  PubMed  Google Scholar 

  11. Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L, Lamberth K, Chang CH, Harndahl M, Weimershaus M, Gerstoft J, Akkad N, Klenerman P, Fugger L, Jones EY, McMichael AJ, Buus S, Schild H, van Endert P, Iversen AK (2009) Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol 10(6):636–646. https://doi.org/10.1038/ni.1728. [pii] ni.1728

    Article  CAS  PubMed  Google Scholar 

  12. Tenzer S, Crawford H, Pymm P, Gifford R, Sreenu VB, Weimershaus M, de Oliveira T, Burgevin A, Gerstoft J, Akkad N, Lunn D, Fugger L, Bell J, Schild H, van Endert P, Iversen AK (2014) HIV-1 adaptation to antigen processing results in population-level immune evasion and affects subtype diversification. Cell Rep 7(2):448–463. https://doi.org/10.1016/j.celrep.2014.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Lin Y, Shu M, Wang R, Hu Y, Lin Z (2013) Proteasomal cleavage site prediction of protein antigen using BP neural network based on a new set of amino acid descriptor. J Mol Model 19(8):3045–3052. https://doi.org/10.1007/s00894-013-1827-7

    Article  CAS  PubMed  Google Scholar 

  14. Stranzl T, Larsen MV, Lundegaard C, Nielsen M (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368. https://doi.org/10.1007/s00251-010-0441-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft TE599/1-1, TE599/2-1 and the Forschungszentrum Immuntherapie (FZI CF7) of the University Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Tenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tenzer, S., Schild, H. (2019). Purification of Large Cytosolic Proteases for In Vitro Assays: 20S and 26S Proteasomes. In: van Endert, P. (eds) Antigen Processing. Methods in Molecular Biology, vol 1988. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9450-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9450-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9449-6

  • Online ISBN: 978-1-4939-9450-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics