Skip to main content

HPLC Enantioseparations with Polysaccharide-Based Chiral Stationary Phases in HILIC Conditions

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

In contrast to achiral hydrophilic interaction liquid chromatography (HILIC), which is a popular and largely applied technique to analyze polar compounds such as pharmaceuticals, metabolites, proteins, peptides, amino acids, oligonucleotides, and carbohydrates, the introduction of the HILIC concept in enantioselective chromatography has been relatively recent and scarcely debated. In this chapter, the HILIC enantioseparations carried out on polysaccharide-based chiral stationary phases are grouped and discussed. Another objective of this chapter is to provide a comprehensive overview and insight into the experimental conditions needed to operate under HILIC mode. Finally, to stimulate and facilitate the application of this chromatographic technique, a detailed experimental protocol of a chiral resolution on a chlorinated cellulose-based chiral stationary phase under HILIC conditions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hemström P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    Article  Google Scholar 

  2. Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692:1–25

    Article  CAS  Google Scholar 

  3. Schuster G, Lindner W (2013) Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships. J Chromatogr A 1273:73–94

    Article  CAS  Google Scholar 

  4. Guo Y (2015) Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC). Analyst 140:6452–6466

    Article  CAS  Google Scholar 

  5. McCalley DV (2017) Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A 1523:49–71

    Article  CAS  Google Scholar 

  6. Felinger CA (2013) A hydrophilic interaction liquid chromatography. In: Fanali S et al (eds) Liquid chromatography: fundamentals and instrumentation. Elsevier, Amsterdam, pp 19–40

    Chapter  Google Scholar 

  7. Linden JC, Lawhead CL (1975) Liquid chromatography of saccharides. J Chromatogr 105:125–133

    Article  CAS  Google Scholar 

  8. Palmer JK (1975) A versatile system for sugar analysis via liquid chromatography. Anal Lett 8:215–224

    Article  CAS  Google Scholar 

  9. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196

    Article  CAS  Google Scholar 

  10. Dejaegher B, Vander Heyden Y (2010) HILIC methods in pharmaceutical analysis. J Sep Sci 33:698–715

    Article  CAS  Google Scholar 

  11. Lämmerhofer M (2010) HILIC and mixed-mode chromatography: the rising stars in separation science HILIC and mixed-mode chromatography. J Sep Sci 33:679–680

    Article  Google Scholar 

  12. Jandera P (2008) Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. J Sep Sci 31:1421–1437

    Article  CAS  Google Scholar 

  13. Okamoto Y, Yashima E (1998) Polysaccharide derivatives for chromatographic separation of enantiomers. Angew Chem Int Ed Engl 37:1020–1043

    Article  Google Scholar 

  14. Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F (2011) Recent applications in chiral high performance liquid chromatography: a review. Anal Chim Acta 706:205–222

    Article  CAS  Google Scholar 

  15. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856

    Article  Google Scholar 

  16. Ikai T, Okamoto Y (2009) Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev 109:6077–6101

    Article  CAS  Google Scholar 

  17. Chankvetadze B (2012) Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J Chromatogr A 1269:26–51

    Article  CAS  Google Scholar 

  18. Okamoto Y, Kawashima M, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel. J Am Chem Soc 106:5357–5359

    Article  CAS  Google Scholar 

  19. Pierini M, Carradori S, Menta S, Secci D, Cirilli R (2017) 3-(Phenyl-4-oxy)-5-phenyl-4,5-dihydro-(1H)-pyrazole: a fascinating molecular framework to study the enantioseparation ability of the amylose (3,5-dimethylphenylcarbamate) chiral stationary phase. Part II. Solvophobic effects in enantiorecognition process. J Chromatogr A 1499:140–148

    Article  CAS  Google Scholar 

  20. Ortuso F, Alcaro S, Menta S, Fioravanti R, Cirilli R (2014) A chromatographic and computational study on the driving force operating in the exceptionally large enantioseparation of N-thiocarbamoyl-3-(4′-biphenyl)-5-phenyl-4,5-dihydro-(1H) pyrazole on a 4-methylbenzoate cellulose-based chiral stationary phase. J Chromatogr A 1324:71–77

    Article  CAS  Google Scholar 

  21. Cirilli R, Simonelli A, Ferretti R, Bolasco A, Chimenti P, Secci D, Maccioni E, La Torre F (2006) Analytical and semipreparative high performance liquid chromatography enantioseparation of new substituted 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)-pyrazoles on polysaccharide-based chiral stationary phases in normal-phase, polar organic and reversed-phase conditions. J Chromatogr A 101:198–203

    Article  Google Scholar 

  22. Sanna ML, Maccioni E, Vigo S, Faggi C, Cirilli R (2010) Application of an immobilised amylose-based chiral stationary phase to the development of new monoamine oxidase B inhibitors. Talanta 82:426–431

    Article  CAS  Google Scholar 

  23. Tachibana K, Ohnishi A (2001) Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases. J Chromatogr A 906:127–154

    Article  CAS  Google Scholar 

  24. Zhang T, Nguyen D, Franco P (2010) Reversed-phase screening strategies for liquid chromatography on polysaccharide-derived chiral stationary phases. J Chromatogr A 1217:1048–1055

    Article  CAS  Google Scholar 

  25. Younes AA, Mangelings D, Vander Heyden Y (2012) Chiral separations in reversed-phase liquid chromatography: evaluation of several polysaccharide-based chiral stationary phases for a separation strategy update. J Chromatogr A 1269:154–167

    Article  CAS  Google Scholar 

  26. Rizzo S, Menta S, Benincori T, Ferretti R, Pierini M, Cirilli R, Sannicolò F (2015) Determination of the enantiomerization barrier of the residual enantiomers of C3-symmetric tris[3-(1-methyl-2-alkyl)indolyl]phosphane oxides: case study of a multitasking HPLC investigation based on an immobilized polysaccharide stationary phase. Chirality 12:888–899

    Article  Google Scholar 

  27. Ferretti R, Gallinella B, La Torre F, Zanitti L, Turchetto L, Mosca A, Cirilli R (2009) Direct high-performance liquid chromatography enantioseparation of terazosin on an immobilised polysaccharide-based chiral stationary phase under polar organic and reversed-phase conditions. J Chromatogr A 1216:5385–5390

    Article  CAS  Google Scholar 

  28. Cirilli R, Ferretti R, Gallinella B, De Santis E, Zanitti L, La Torre F (2008) High-performance liquid chromatography enantioseparation of proton pump inhibitors using the immobilized amylose-based Chiralpak IA chiral stationary phase in normal-phase, polar organic and reversed-phase conditions. J Chromatogr A 1177:105–113

    Article  CAS  Google Scholar 

  29. Cirilli R, Ferretti R, De Santis E, Gallinella B, Zanitti L, La Torre F (2008) High-performance liquid chromatography separation of enantiomers of flavanone and 2′-hydroxychalcone under reversed-phase conditions. J Chromatogr A 1190:95–101

    Article  CAS  Google Scholar 

  30. Kummer M, Werner G (1998) Chiral resolution of enantiomeric steroids by high-performance liquid chromatography on amylose tris(3,5-dimethylphenylcarbamate) under reversed-phase conditions. J Chromatogr A 825:107–114

    Article  CAS  Google Scholar 

  31. Chankvetadze B, Yamamoto C, Okamoto Y (2001) Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous–organic and normal-phase eluents. J Chromatogr A 922:127–137

    Article  CAS  Google Scholar 

  32. Jibuti G, Mskhiladze A, Takaishvili N, Karchkhadze M, Chankvetadze L, Farkas T, Chankvetadze B (2012) HPLC separation of dihydropyridine derivatives enantiomers with emphasis on elution order using polysaccharide-based chiral columns. J Sep Sci 35:2529–2537

    Article  CAS  Google Scholar 

  33. Cirilli R, Ferretti R, Gallinella B, Zanitti L (2013) Retention behavior of proton pump inhibitors using immobilized polysaccharide-derived chiral stationary phases with organic-aqueous mobile phases. J Chromatogr A 1304:147–153

    Article  CAS  Google Scholar 

  34. Materazzo S, Carradori S, Ferretti R, Gallinella B, Secci D, Cirilli R (2014) Effect of the water content on the retention and enantioselectivity of albendazole and fenbendazole sulfoxides using amylose-based chiral stationary phases in organic-aqueous conditions. J Chromatogr A 1327:73–79

    Article  CAS  Google Scholar 

  35. Gallinella B, Bucciarelli L, Zanitti L, Ferretti R, Cirilli R (2014) Direct separation of the enantiomers of oxaliplatin on a cellulose-based chiral stationary phase in hydrophilic interaction liquid chromatography mode. J Chromatogr A 1339:210–213

    Article  CAS  Google Scholar 

  36. Matarashvili I, Ghughunishvili D, Chankvetadze L, Takaishvili N, Khatiashvili T, Tsintsadze M, Farkasc T, Chankvetadze B (2017) Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: typical reversed-phase behavior? J Chromatogr A 1483:86–62

    Article  CAS  Google Scholar 

  37. Ferretti R, Carradori S, Guglielmi P, Pierini M, Casulli A, Cirilli R (2017) Enantiomers of triclabendazole sulfoxide: analytical and semipreparative HPLC separation, absolute configuration assignment, and transformation into sodium salt. J Pharm Biomed Anal 40:38–44

    Article  Google Scholar 

  38. Ferretti R, Zanitti L, Casulli A, Cirilli R (2016) Green high-performance liquid chromatography enantioseparation of lansoprazole using a cellulose-based chiral stationary phase under ethanol/water mode. J Sep Sci 39:1418–1424

    Article  CAS  Google Scholar 

  39. Thirupathi C, Nagesh Kumar K, Srinivasu G, Lakshmi Narayana C, Parameswara Murthy C (2018) Development and validation of stereo selective method for the separation of razoxane enantiomers in hydrophilic interaction chromatography. J Chromatogr Sci 56:147–153

    Article  CAS  Google Scholar 

  40. Cirilli R, Guglielmi P, Formica FR, Casulli A, Carradori S (2017) The sodium salt of the enantiomers of ricobendazole: preparation, solubility and chiroptical properties. J Pharm Biomed Anal 139:1–7

    Article  CAS  Google Scholar 

  41. Ferretti R, Zanitti L, Casulli A, Cirilli R (2018) Unusual retention behavior of omeprazole and its chiral impurities B and E on the amylose tris (3-chloro-5-methylphenylcarbamate) chiral stationary phase in polar organic mode. J Pharmaceut Anal 8(4):234–239. https://doi.org/10.1016/j.jpha.2018.04.001

    Article  Google Scholar 

  42. Wu Z, Razzak M, Tucker IG, Medlicott NJ (2005) Physicochemical characterization of ricobendazole: I. Solubility, lipophilicity, and ionization characteristics. J Pharm Sci 94:983–993

    Article  CAS  Google Scholar 

  43. Ferretti R, Mai A, Gallinella B, Zanitti L, Valente S, Cirilli R (2011) Application of 3 μm particle-based amylose-derived chiral stationary phases for the enantioseparation of potential histone deacetylase inhibitors. J Chromatogr A 1218:8394–8398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cirilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Cirilli, R. (2019). HPLC Enantioseparations with Polysaccharide-Based Chiral Stationary Phases in HILIC Conditions. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_7

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics