Skip to main content

Chiral Metabolomics Using Triazine-Based Chiral Labeling Reagents by UPLC-ESI-MS/MS

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

The determination of enantiomers of biological molecules is an important issue because a significant difference in the activity of the enantiomers is generally observed in biological systems. Chiral separations can be carried out by direct resolution using a chiral stationary column or by indirect resolution based on the derivatization with a chiral reagent. Many chiral-labeling reagents for ultraviolet-visible and fluorescence detections have been developed for various functional groups, such as amine and carboxylic acid. However, there are hardly any labeling reagents for LC-MS-specific detection. Based on this observation, we have developed several chiral-labeling reagents for LC-MS/MS analysis.

This chapter describes methodologies and applications for the indirect LC-MS/MS determination of biological chiral molecules using triazine-based chiral-labeling reagents, i.e., (S and R)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine (DMT-3(S and R)-Apy) for carboxylic acids and (S and R)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidine-2-carboxylate (DMT-(S and R)-Pro-OSu) for amines and amino acids. A reliable method for the non-targeted chiral metabolomics is also described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward TJ, Ward KD (2010) Chiral separations: Fundamental review 2010. Anal Chem 82:4712–4722

    Article  CAS  Google Scholar 

  2. Toyo'oka T (2002) Resolution of chiral drugs by liquid chromatography based upon diastereomer formation with chiral derivatization reagents. J Biochem Biophys Methods 54:25–56

    Article  CAS  Google Scholar 

  3. Toyo'oka T (2002) Development of chiral derivatization reagents having benzofurazan (2,1,3-benzoxadiazole) fluorophore for HPLC analysis and their application to the sensitive detection of biologically important compounds. Bunseki Kagaku 51:339–358

    Article  CAS  Google Scholar 

  4. Toyo'oka T (1999) Derivatization for resolution of chiral compounds. In: Toyo'oka T (ed) Modern derivatization methods for separation sciences. Wiley, Chichester, pp 217–289

    Google Scholar 

  5. Toyo'oka T (1996) Recent progress in liquid chromatographic enantioseparation based upon diastereomer formation with fluorescent chiral derivatization reagents. Biomed Chromatogr 10:265–277

    Article  CAS  Google Scholar 

  6. Sun XX, Sun LZ, Aboul-Enein HY (2001) Chiral derivatization reagents for drug enantioseparation by high-performance liquid chromatography based upon pre-column derivatization and formation of diastereomers: enantioselectivity and related structure. Biomed Chromatogr 15:116–132

    Article  CAS  Google Scholar 

  7. Toyo'oka T (2002) Fluorescent tagging of physiologically important carboxylic acids, including fatty acids, for their detection in liquid chromatography. Anal Chim Acta 465:111–130

    Article  CAS  Google Scholar 

  8. Liu YM, Schneider M, Sticha CM, Toyo'oka T, Sweedler JV (1998) Separation of amino acid and peptide stereoisomers by nonionic micelle-mediated capillary electrophoresis after chiral derivatization. J Chromatogr A 800:345–354

    Article  CAS  Google Scholar 

  9. Ilisz I, Berkecz R, Peter A (2008) Application of chiral derivatization agents in the high-performance liquid chromatographic separation of amino acid enantiomers: a review. J Pharm Biomed Anal 47:1–15

    Article  CAS  Google Scholar 

  10. Bhushan R, Kumar V (2008) Synthesis of chiral hydrazine reagents and their application for liquid chromatographic separation of carbonyl compounds via diastereomer formation. J Chromatogr A 1190:86–94

    Article  CAS  Google Scholar 

  11. Bhushan R, Dixit S (2011) Application of hydrazine dinitrophenyl-amino acids as chiral derivatizing reagents for liquid chromatographic enantioresolution of carbonyl compounds. Chromatographia 74:189–196

    Article  CAS  Google Scholar 

  12. Toyo'oka T, Ishibashi M, Terao T, Imai K (1993) 4-(N,N-Dimethylaminosulfonyl)-7-(2-chloroformylpyrrolidine-1-yl)-2,1,3-benzoxadiazole: Novel fluorescent chiral derivatization reagents for the resolution of alcohol enantiomers by high-performance liquid chromatography. Analyst 118:759–763

    Article  CAS  Google Scholar 

  13. Toyo'oka T, Liu YM, Hanioka N, Jinno H, Ando M (1994) Determination of hydroxyls and amines, labelled with 4-(N,N-dimethylaminosulfonyl)-7-(2-chloroformylpyrrolidine-1-yl)-2,1,3-benzoxadiazole, by high-performance liquid chromatography with fluorescence and laser-induced fluorescence detection. Anal Chim Acta 285:343–351

    Article  CAS  Google Scholar 

  14. Toyo'oka T, Liu YM, Hanioka N, Jinno H, Ando M, Imai K (1994) Resolution of enantiomers of alcohols and amines by high-performance liquid chromatography after derivatization with a novel fluorescent chiral reagent. J Chromatogr A 675:79–88

    Article  CAS  Google Scholar 

  15. Nozawa Y, Sakai N, Arai K, Kawasaki Y, Harada K (2007) Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey's method. J Microbiol Methods 70:306–311

    Article  CAS  Google Scholar 

  16. Fujii K, Ikai Y, Mayumi T, Oka H, Suzuki M, Harada K (1997) A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: elucidation of limitations of Marfey's method and of its separation mechanism. Anal Chem 69:3346–3352

    Article  CAS  Google Scholar 

  17. Higashi T, Ichikawa T, Inagaki S, Min JZ, Fukushima T, Toyo'oka T (2010) Simple and practical derivatization procedure for enhanced detection of carboxylic acids in liquid chromatography-electrospray ionization-tandem mass spectrometry. J Pharm Biomed Anal 52:809–818

    Article  CAS  Google Scholar 

  18. Xu L, Spink DC (2008) Analysis of steroidal estrogens as pyridine-3-sulfonyl derivatives by liquid chromatography electrospray tandem mass spectrometry. Anal Biochem 375:105–114

    Article  CAS  Google Scholar 

  19. Shimbo K, Oonuki T, Yahashi A, Hirayama K, Miyano H (2009) Precolumn derivatization reagents for high-speed analysis of amines and amino acids in biological fluid using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1483–1492

    Article  CAS  Google Scholar 

  20. Inagaki S, Tano Y, Yamakata Y, Higashi T, Min JZ, Toyo'oka T (2010) Highly sensitive and positively charged precolumn derivatization reagent for amines and amino acids in liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 24:1358–1364

    Article  CAS  Google Scholar 

  21. Tsutsui H, Mochizuki T, Maeda T, Noge I, Kitagawa Y, Min JZ, Todoroki K, Inoue K, Toyo'oka T (2012) Simultaneous determination of DL-lactic acid and DL-3-hydroxybutyric acid enantiomers in saliva of diabetes mellitus patients by high-throughput LC–ESI-MS/MS. Anal Bioanal Chem 404:1925–1934

    Article  CAS  Google Scholar 

  22. Mochizuki T, Taniguchi S, Tsutsui H, Min JZ, Inoue K, Todoroki K, Toyo'oka T (2013) Relative quantification of enantiomers of chiral amines by high-throughput LC-ESI-MS/MS using isotopic variants of light and heavy L-pyroglutamic acids as the derivatization reagents. Anal Chim Acta 773:76–82

    Article  CAS  Google Scholar 

  23. Nagao R, Tsutsui H, Mochizuki T, Takayama T, Kuwabara T, Min JZ, Inoue K, Todoroki K, Toyo'oka T (2013) Novel chiral derivatization reagents possessing a pyridylthiourea structure for enantiospecific determination of amines and carboxylic acids in high-throughput liquid chromatography and electrospray-ionization mass spectrometry for chiral metabolomics identification. J Chromatogr A 1296:111–118

    Article  CAS  Google Scholar 

  24. Mochizuki T, Todoroki K, Inoue K, Min JZ, Toyo'oka T (2014) Isotopic variants of light and heavy L-pyroglutamic acid succinimidyl esters as the derivatization reagents for DL-amino acid chiral metabolomics identification by liquid chromatography and electrospray ionization mass spectrometry. Anal Chim Acta 811:51–59

    Article  CAS  Google Scholar 

  25. Kuwabara T, Takayama T, Todoroki K, Inoue K, Min JZ, Toyo'oka T (2014) Evaluation of a series of prolylamidepyridine as the chiral derivatization reagents for enantioseparation of carboxylic acids by LC-ESI-MS/MS and the application to human saliva. Anal Bioanal Chem 406:2641–2649

    Article  CAS  Google Scholar 

  26. Takayama T, Kuwabara T, Maeda T, Noge I, Kitagawa Y, Inoue K, Todoroki K, Min JZ, Toyo'oka T (2015) Profiling of chiral and achiral carboxylic acid metabolomics: synthesis and evaluation of triazine-type chiral derivatization reagents for carboxylic acids by LC-ESI-MS/MS and the application to saliva of healthy volunteers and diabetic patients. Anal Bioanal Chem 407:1003–1014

    Article  CAS  Google Scholar 

  27. Mochizuki T, Takayama T, Todoroki K, Inoue K, Min JZ, Toyo'oka T (2015) Towards the chiral metabolomics: liquid chromatography-mass spectrometry based DL-amino acid analysis after labeling with a new chiral reagent, (S)-2,5-dioxopyrrolidin-1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidine-2-carboxylate, and the application to saliva of healthy volunteers. Anal Chim Acta 875:73–82

    Article  CAS  Google Scholar 

  28. Numako M, Takayama T, Noge I, Kitagawa Y, Todoroki K, Mizuno H, Min JZ, Toyo'oka T (2016) Dried saliva spot (DSS) as a convenient and reliable sampling for bioanalysis: an application for the diagnosis of diabetes mellitus. Anal Chem 88:635–639

    Article  CAS  Google Scholar 

  29. Toyo'oka T (2016) Diagnostic approach to disease using non-invasive samples based on derivatization and LC-ESI-MS/MS. Biol Pharm Bull 39:1397–1414

    Article  CAS  Google Scholar 

  30. Toyo'oka T (2017) Derivatization-based high-throughput bioanalysis by LC-MS. Anal Sci 33:555–564

    Article  CAS  Google Scholar 

  31. Takayama T, Mochizuki T, Todoroki K, Min JZ, Mizuno H, Inoue K, Akatsu H, Noge I, Toyo'oka T (2015) A novel approach for LC-MS/MS-based chiral metabolomics fingerprinting and chiral metabolomics extraction using a pair of enantiomers of chiral derivatization reagents. Anal Chim Acta 898:73–84

    Article  CAS  Google Scholar 

  32. Nishiumi S, Kobayashi T, Ikeda A, Yoshie T, Kibi M, Izumi Y, Okuno T, Hayashi N, Kawano S, Takenawa T, Azuma T, Yoshida M (2012) A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS One 7(7):e40459

    Article  CAS  Google Scholar 

  33. Nishiumi S, Shinohara M, Ikeda A, Yoshie T, Hatano N, Kakuyama S, Mizuno S, Sanuki T, Kutsumi H, Fukusaki E, Azuma T, Takenawa T, Yoshida M (2010) Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics 6:518–528

    Article  CAS  Google Scholar 

  34. Vinayavekhin N, Homan EA, Saghatelian A (2010) Exploring disease through metabolomics. ACS Chem Biol 5:91–103

    Article  CAS  Google Scholar 

  35. Gonzalez J, Willis MS (2010) Ivar Asbjorn folling discovered phenylketonuria (PKU). Lab medicine 41(2):118–119

    Article  Google Scholar 

  36. Fürst P (1989) Amino acid metabolism in uremia. J Am College Nutrition 8(4):310–323

    Article  Google Scholar 

  37. Snyder SH, Kim PM (2000) D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem Res 25:553–560

    Article  CAS  Google Scholar 

  38. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  CAS  Google Scholar 

  39. Sakata K, Fukushima T, Minje L, Ogurusu T, Taira H, Mishina M, Shingai R (1999) Modulation by L- and D-isoforms of amino acids of the L-glutamate response of N-methyl-D-aspartate receptors. Biochemistry 38:10099–10106

    Article  CAS  Google Scholar 

  40. Toyo'oka T (2008) Determination methods for biologically active compounds by ultra-performance liquid chromatography coupled with mass spectrometry: application to the analyses of pharmaceuticals, foods, plants, environments, metabonomics, and metabolomics. J Chromatogr Sci 46:233–247

    Article  CAS  Google Scholar 

  41. Inoue K, Tsutsui H, Akatsu H, Hashizume Y, Matsukawa N, Yamamoto T, Toyo'oka T (2013) Metabolic profiling of Alzheimer's disease brains. Sci Rep 3:2364. https://doi.org/10.1038/srep02364

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wren SAC (2005) Peak capacity in gradient ultra-performance liquid chromatography (UPLC). J Pharm Biomed Anal 38:337–343

    Article  CAS  Google Scholar 

  43. Nguyen DTT, Guillarme D, Rudaz S, Veuthey JL (2006) Chromatographic behavior and comparison of column packed with sub-2 μm stationary phases in liquid chromatography. J Chromatogr A 1128:105–113

    Article  CAS  Google Scholar 

  44. Guillarme D, Nguyen DTT, Rudaz S, Veuthey JL (2007) Recent developments in liquid chromatography - impact on qualitative and quantitative performance. J Chromatogr A 1149:20–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimasa Toyo’oka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Toyo’oka, T. (2019). Chiral Metabolomics Using Triazine-Based Chiral Labeling Reagents by UPLC-ESI-MS/MS. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_4

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics