Skip to main content

Enantioseparations by Gas Chromatography Using Porous Organic Cages as Stationary Phase

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

The resolution of chiral compounds into optically pure enantiomers is very important in various fields, such as pharmaceutical, chemical, agricultural, and food industries. Chiral gas chromatography (GC) is one of the efficient methods for enantioseparations of volatile compounds. In recent years, porous materials as stationary phases for chromatographic separations have achieved increasing attention. Porous organic cages (POCs) represent an emerging class of porous materials, which are assembled by discrete organic molecules with shape-persistent and permanent cavities through weak intermolecular forces. This chapter describes several chiral POCs as chiral stationary phases for GC enantioseparations of racemic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier N, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906:3–33

    Article  CAS  Google Scholar 

  2. Gil-Av E, Feibush B, Charles-Sigler R (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett 7:1009–1015

    Article  Google Scholar 

  3. Schurig V (2011) Separation of enantiomers by gas chromatography on chiral stationary phases, Chapter 9. In: Ahuja S (ed) Chiral separation methods. Wiley, Hoboken, pp 251–297

    Google Scholar 

  4. Gu ZY, Yan XP (2010) Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew Chem Int Ed 49:1477–1480

    Article  CAS  Google Scholar 

  5. Zhang M, Pu ZJ, Chen XL, Gong XL, Zhu AX, Yuan LM (2013) Chiral recognition of a 3D chiral nanoporous metal-organic framework. Chem Commun 49:5201–5203

    Article  CAS  Google Scholar 

  6. Qian HL, Yang CX, Yan XP (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7:12104

    Article  CAS  Google Scholar 

  7. Han X, Huang JJ, Yuan C, Liu Y, Cui Y (2018) Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 140:892–895

    Article  CAS  Google Scholar 

  8. Zhang JH, Xie SM, Zhang M, Zi M, He PG, Yuan LM (2014) Novel inorganic mesoporous material with chiral nematic structure derived from nanocrystalline cellulose for high-resolution gas chromatographic separations. Anal Chem 86:9595–9602

    Article  CAS  Google Scholar 

  9. Li YX, Fu SG, Zhang JH, Xie SM, Li L, He YY, Zi M, Yuan LM (2018) A highly ordered chiral inorganic mesoporous material used as stationary phase for high-resolution gas chromatographic separations. J Chromatogr A 1557:99–106

    Article  CAS  Google Scholar 

  10. Dong J, Liu Y, Cui Y (2014) Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem Commun 50:14949–14952

    Article  CAS  Google Scholar 

  11. Lu CM, Liu SQ, Xu JQ, Ding YJ, Ouyang GF (2016) Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography. Anal Chim Acta 902:205–211

    Article  CAS  Google Scholar 

  12. Xie SM, Zhang ZJ, Wang ZY, Yuan LM (2011) Chiral metal-organic frameworks for high-resolution gas chromatographic separations. J Am Chem Soc 133:11892–11895

    Article  CAS  Google Scholar 

  13. McKeown NB (2010) Nanoporous molecular crystals. J Mater Chem 20:10588–10597

    Article  CAS  Google Scholar 

  14. Couderc G, Hulliger J (2010) Channel forming organic crystals: guest alignment and properties. Chem Soc Rev 39:1545–1554

    Article  CAS  Google Scholar 

  15. Holst JR, Trewin A, Cooper AI (2010) Porous organic molecules. Nat Chem 2:915–920

    Article  CAS  Google Scholar 

  16. Song Q, Jiang S, Hasell T, Liu M, Sun SJ, Cheetham AK, Sivaniah E, Cooper AI (2016) Porous organic cage thin films and molecular-sieving membranes. Adv Mater 28:2629–2637

    Article  CAS  Google Scholar 

  17. Mastalerz M (2010) Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew Chem Int Ed 49:5042–5053

    Article  CAS  Google Scholar 

  18. Zhang G, Mastalerz M (2014) Organic cage compounds-from shape-persistency to function. Chem Soc Rev 43:1934–1947

    Article  CAS  Google Scholar 

  19. Tozawa T, Jones JTA, Swamy SI, Jiang S, Adams DJ, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong SY, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin AMZ, Steiner A, Cooper AI (2009) Porous organic cages. Nat Mater 8:973–978

    Article  CAS  Google Scholar 

  20. Jin YH, Voss BA, Noble RD, Zhang W (2010) A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2. Angew Chem Int Ed 49:6348–6351

    Article  CAS  Google Scholar 

  21. Hasell T, Miklitz M, Stephenson A, Little MA, Chong SY, Clowes R, Chen L, Holden D, Tribello GA, Jelfs KE, Cooper AI (2016) Porous organic cages for sulfur hexafluoride separation. J Am Chem Soc 138:1653–1659

    Article  CAS  Google Scholar 

  22. Mitra T, Jelfs KE, Schmidtmann M, Ahmed A, Chong SY, Adams DJ, Cooper AI (2013) Molecular shape sorting using molecular organic cages. Nat Chem 5:276–281

    Article  CAS  Google Scholar 

  23. Chen L, Reiss PS, Chong SY, Holden D, Jelfs KE, Hasell T, Little MA, Kewley A, Briggs ME, Stephenson A, Thomas KM, Armstrong JA, Bell J, Busto J, Noel R, Liu J, Strachan DM, Thallapally PK, Cooper AI (2014) Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat Mater 13:954–960

    Article  CAS  Google Scholar 

  24. Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR (2012) Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances. Adv Mater 24:6049–6052

    Article  CAS  Google Scholar 

  25. Sun JK, Zhan WW, Akita T, Xu Q (2015) Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer. J Am Chem Soc 137:7063–7066

    Article  CAS  Google Scholar 

  26. McCaffrey R, Long H, Jin Y, Sanders A, Park W, Zhang W (2014) Template synthesis of gold nanoparticles with an organic molecular cage. J Am Chem Soc 136:1782–1785

    Article  CAS  Google Scholar 

  27. Uemura T, Nakanishi R, Mochizuki S, Kitagawa S, Mizuno M (2016) Radical polymerization of vinyl monomers in porous organic cages. Angew Chem Int Ed 55:6443–6447

    Article  CAS  Google Scholar 

  28. Zhang JH, Xie SM, Chen L, Wang BJ, He PG, Yuan LM (2015) Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography. Anal Chem 87:7817–7824

    Article  CAS  Google Scholar 

  29. Zhang JH, Xie SM, Wang BJ, He PG, Yuan LM (2018) A homochiral porous organic cage with large cavity and pore windows for the efficient gas chromatography separation of enantiomers and positional isomers. J Sep Sci 41:1385–1394

    Article  CAS  Google Scholar 

  30. Xie SM, Zhang JH, Fu N, Wang BJ, Chen L, Yuan LM (2016) A chiral porous organic cage for molecular recognition using gas chromatography. Anal Chim Acta 903:156–163

    Article  CAS  Google Scholar 

  31. Zhang JH, Xie SM, Wang BJ, He PG, Yuan LM (2015) Highly selective separation of enantiomers using a chiral porous organic cage. J Chromatogr A 1426:174–182

    Article  CAS  Google Scholar 

  32. Xie SM, Zhang JH, Fu N, Wang BJ, Hu C, Yuan LM (2016) Application of homochiral alkylated organic cages as chiral stationary phases for molecular separations by capillary gas chromatography. Molecules 21:1466

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (Nos. 21765025, 21705142, 21675141, 21365024) of China and Applied Basic Research Foundation of Yunnan Province (No. 2017FB013).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Xie, SM., Zhang, JH., Yuan, LM. (2019). Enantioseparations by Gas Chromatography Using Porous Organic Cages as Stationary Phase. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_3

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics