Skip to main content

Enantioseparation of Selected Imidazole Drugs Using Dual Cyclodextrin-Modified Micellar Electrokinetic Chromatography

  • Protocol
Book cover Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

  • 994 Accesses

Abstract

Particular attention has been paid to capillary electrophoresis as versatile and environmentally friendly approach for enantioseparations of a wide spectrum of compounds. Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) is a method of choice to provide effective separation toward hydrophobic and uncharged stereoisomers. The chiral discrimination of the solutes relies upon the partitioning between a given CD in the aqueous phase and micelles formed from a surfactant. Synergistic combinations of chiral selectors, surfactant, and modifier contribute to successful enantioseparations of the enantiomers. In this chapter, an application of CD-MEKC for the enantioseparation of selected imidazole drugs employing a dual CDs system is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saz JM, Marina ML (2016) Recent advances in the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J Chromatogr A 1467:79–94

    Article  CAS  Google Scholar 

  2. Rezanka P, Navratilova K, Rezanka M, Kral V, Sykora D (2014) Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 35:2701–2721

    Article  CAS  Google Scholar 

  3. Zhu Q, Scriba GKE (2016) Advances in the use of cyclodextrins as chiral selectors in capillary electrokinetic chromatography: fundamentals and applications. Chromatographia 79:1403–1435

    Article  CAS  Google Scholar 

  4. Huang L, Lin J, Xu L, Chen G (2007) Non aqueous and aqueous-organic media for the enantiomeric separations of neutral organophosphorus pesticides by CE. Electrophoresis 28:2758–2764

    Article  CAS  Google Scholar 

  5. Li W, Zhao L, Zhang H, Chen X, Chen S, Zhu Z, Hong Z, Chai Y (2014) Enantioseparation of new triadimenol antifungal active compounds by electrokinetic chromatography and molecular modeling study of chiral recognition mechanisms. Electrophoresis 35:2855–2862

    Article  Google Scholar 

  6. Terabe S, Otsuka K, Ichikawa K, Tsuchiya A, Ando T (1984) Electrokinetic separations with micellar solutions and open-tubular capillaries. Anal Chem 56:111–113

    Article  CAS  Google Scholar 

  7. Terabe S (2008) Micellar electrokinetic chromatography for high-performance analytical separation. Chem Rec 8:291–301. The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

    Article  CAS  Google Scholar 

  8. Hu S-Q, Guo X-M, Shi H-J, Luo R-J (2015) Separation mechanisms for palonosetron stereoisomers at different chiral selector concentrations in MEKC. Electrophoresis 36:825–829

    Article  CAS  Google Scholar 

  9. Van Zomeren PV, Hilhorst MJ, Coenegracht PMJ, De Jong GJ (2000) Resolution optimization in micellar electrokinetic chromatography using empirical models. J Chromatogr A 867:247–259

    Article  Google Scholar 

  10. Deeb SE, Iriban MA, Gust R (2011) MEKC as a powerful growing analytical technique. Electrophoresis 32:166–183

    Article  Google Scholar 

  11. Lin X, Hou W, Zhou C (2003) Enantiomer separation of miconazole by capillary electrophoresis with dual cyclodextrin systems. Anal Sci 19:1509–1512

    Article  CAS  Google Scholar 

  12. Česla P, Blomberg L, Hamberg M, Jandera P (2006) Characterization of anacardic acids by micellar electrokinetic chromatography and mass spectrometry. J Chromatogr A 1115:253–259

    Article  Google Scholar 

  13. Wan Ibrahim WA, Warno SA, Aboul-Enein HY, Hermawan D, Sanagi MM (2009) Simultaneous enantioseparation of cyproconazole, bromuconazole, and diniconazole enantiomers by CD-modified MEKC. Electrophoresis 30:1976–1982

    Article  Google Scholar 

  14. Menéndez-López N, Valimaña-Traverso J, Castro-Puyana M, Salgado A, García MA, Marina ML (2017) Enantiomeric separation of the antiuremic drug colchicine by electrokinetic chromatography: method development and quantitative analysis. J Pharm Biomed Anal 138:189–196

    Article  Google Scholar 

  15. Hu S-Q, Wang G-X, Guo W-B, Guo X-M, Zhao M (2014) Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography. J Chromatogr A 1342:86–91

    Article  CAS  Google Scholar 

  16. Ibrahim WAW, Arsad SR, Maarof H, Sanagi MM, Aboul-Enein HY (2015) Chiral separation of four stereoisomers of ketoconazole drugs using capillary electrophoresis. Chirality 27:223–227

    Article  Google Scholar 

  17. Pérez-Fernández V, García MA, Marina ML (2010) Enantiomeric separation of cis-bifenthrin by CD-MEKC: quantitative analysis in a commercial insecticides formulation. Electrophoresis 31:1533–1539

    Article  Google Scholar 

  18. Yu T, Du Y, Chen B (2011) Evaluation of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis. Electrophoresis 32:1898–1905

    Article  CAS  Google Scholar 

  19. García MÁ, Menéndez-López N, Boltes K, Castro-Puyana M, Marina ML (2017) A capillary micellar electrokinetic chromatography method for the stereoselective quantitation of bioallethrin in biotic and abiotic samples. J Chromatogr A 1510:108–116

    Article  Google Scholar 

  20. Kodama S, Nakajima S, Ozaki H, Takemoto R, Itabashi Y, Kuksis A (2016) Enantioseparation of hydroxyeicosatetraenoic acids by hydroxypropyl- γ-cyclodextrin-modified micellar electrokinetic chromatography. Electrophoresis 37:3196–3205

    Article  CAS  Google Scholar 

  21. Orlandini S, Pasquini B, Caprini C, Del Bubba M, Douša M, Pinzauti S (2016) Enantioseparation and impurity determination of ambrisentan using cyclodextrin-modified micellar electrokinetic chromatography: visualizing the design space within quality by design framework. J Chromatogr A 1467:363–371

    Article  CAS  Google Scholar 

  22. Mikuma T, Iwata YT, Miyaguchi H, Kuwayama K, Tsujikawa K, Kanamori T, Kana H, Inoue H (2016) Approaching over 10 000-fold sensitivity increase in chiral capillary electrophoresis: cation-selective exhaustive injection and sweeping cyclodextrin-modified micellar electrokinetic chromatography. Electrophoresis 37:2970–2976

    Article  CAS  Google Scholar 

  23. Lin E-P, Lin K-C, Chang C-W, Hsieh M-M (2013) On-line sample preconcentration by sweeping and poly(ethylene oxide)-mediated stacking for simultaneous analysis of nine pairs of amino acid enantiomers in capillary electrophoresis. Talanta 114:297–303

    Article  CAS  Google Scholar 

  24. Petr J, Ginterova P, Znaleziona J, Knob R, Loštáková M, Maier V, Ševčik J (2013) Separation of ketoprofen enantiomers at nanomolar concentration levels by micellar electrokinetic chromatography with on-line electrokinetic preconcentration. Cent Eur J Chem 11:335–340

    CAS  Google Scholar 

  25. Cheng H, Zhang Q, Tu Y (2012) Separation of fat-soluble isoquinoline enantiomers using β-cyclodextrin modified micellar capillary electrokinetic chromatography. Curr Pharm Anal 8:37–43

    Article  Google Scholar 

  26. Ibrahim WAW, Wahib SMA, Hermawan D, Sanagi MM, Aboul-Enein HY (2012) Chiral separation of vinpocetine using cyclodextrin-modified micellar electrokinetic chromatography. Chirality 24:252–254

    Article  CAS  Google Scholar 

  27. Hermawan D, Wan Ibrahim WA, Sanagi MM, Aboul-Enein HY (2010) Chiral separation of econazole using micellar electrokinetic chromatography with hydroxypropyl-γ-cyclodextrin. J Pharm Biomed Anal 53:1244–1249

    Article  CAS  Google Scholar 

  28. Wan Ibrahim WA, Hermawan D, Sanagi MM, Aboul-Enein HY (2010) Stacking and sweeping in cyclodextrin-modified MEKC for chiral separation of hexaconazole, penconazole, myclobutanil. Chromatographia 71:305–309

    Article  CAS  Google Scholar 

  29. Wan Ibrahim WA, Wahib SMA, Hermawan D, Sanagi MM, Aboul-Enein HY (2013) Separation of selected imidazole enantiomers using dual cyclodextrin system. Chirality 25:328–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Grant Scheme from the Ministry of Higher Education (Malaysia) under vote number R.J130000.7826.3F262 (78314) and the National Science Foundation awarded by the Ministry of Science, Technology and Innovation (Malaysia) to S.M. Abdul Wahib is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Aini Wan Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Ibrahim, W.A.W., Wahib, S.M.A., Hermawan, D., Sanagi, M.M. (2019). Enantioseparation of Selected Imidazole Drugs Using Dual Cyclodextrin-Modified Micellar Electrokinetic Chromatography. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_24

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics