Skip to main content

Cyclodextrins as Chiral Selectors in Capillary Electrophoresis Enantioseparations

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

Due to their structural variability and their commercial availability, cyclodextrins are the most frequently used chiral selectors in capillary electrophoresis. A variety of migration modes can be realized depending on the characteristics of the cyclodextrins and the analytes. The basic considerations regarding the development of a chiral CE method employing cyclodextrins as chiral selectors are briefly discussed. The presented examples illustrate the separation modes of an acidic and a basic analyte with native and charged cyclodextrin derivatives as a function of the pH of the background electrolyte and the concentration of the cyclodextrin.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617

    Article  CAS  Google Scholar 

  2. Jin Z (2013) Cyclodextrin chemistry. World Scientific Publishing, Singapore

    Book  Google Scholar 

  3. Bilensoy E (ed) (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. Current and future industrial applications. Wiley, Hoboken

    Google Scholar 

  4. Dodziuk H (ed) (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH, Weinheim

    Google Scholar 

  5. Iacovino R, Caso JV, Di Donato C et al (2017) Cyclodextrins as complexing agents: preparation and applications. Curr Org Chem 21:162–176

    Article  CAS  Google Scholar 

  6. Zhu Q, Scriba GKE (2016) Advances in the use of cyclodextrins as chiral selectors in capillary electrokinetic chromatography: fundamentals and applications. Chromatographia 79:1403–1435

    Article  CAS  Google Scholar 

  7. Saz JM, Marina ML (2016) Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J Chromatogr A 1467:79–94

    Article  CAS  Google Scholar 

  8. Cucinotta V, Contino A, Giuffrida A et al (2010) Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. J Chromatogr A 1217:953–967

    Article  CAS  Google Scholar 

  9. Řezanka P, Navrátilová K, Řezanka M et al (2014) Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 35:2701–2721

    Article  Google Scholar 

  10. Escuder-Gilabert L, Martín-Biosca Y, Medina-Hernández MJ et al (2014) Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 1357:2–23

    Article  CAS  Google Scholar 

  11. Zhou J, Tang J, Tang W (2015) Recent development of cationic cyclodextrins for chiral separation. Trends Anal Chem 65:22–29

    Article  CAS  Google Scholar 

  12. Fanali S (2009) Chiral separations by CE employing CDs. Electrophoresis 30:S203–S210

    Article  Google Scholar 

  13. Chankvetadze B (2009) Separation of enantiomers with charged chiral selectors in CE. Electrophoresis 30:S211–S221

    Article  Google Scholar 

  14. Scriba GKE (2008) Cyclodextrins in capillary electrophoresis enantioseparations—recent developments and applications. J Sep Sci 31:1991–2011

    Article  CAS  Google Scholar 

  15. Gübitz G, Schmid MG (2010) Cyclodextrin-mediated chiral separations. In: Van Eeckhaut A, Michotte Y (eds) Chiral separations by capillary electrophoresis. Chromatogr Science Series, vol. 100. CRC Press, Boca Raton, pp 47–85

    Google Scholar 

  16. Chankvetadze B (2006) The application of cyclodextrins for enantioseparations. In: Dodziuk H (ed) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH, Weinheim, pp 119–146

    Chapter  Google Scholar 

  17. Tang W, Ng SC, Sun D (2013) Modified cyclodextrins for chiral separation. Springer, New York

    Book  Google Scholar 

  18. Sánchez-López E, Marina ML, Crego AL (2016) Improving the sensitivity in chiral capillary electrophoresis. Electrophoresis 37:19–34

    Article  Google Scholar 

  19. Jáč P, Scriba GKE (2013) Recent advances in electrodriven enantioseparations. J Sep Sci 36:52–74

    Article  Google Scholar 

  20. Scriba GKE (2013) Differentiation of enantiomers by capillary electrophoresis. Top Curr Chem 340:209–276

    Article  CAS  Google Scholar 

  21. Scriba GKE (2011) Fundamental aspects of chiral electromigration techniques and application in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 55:688–701

    Article  CAS  Google Scholar 

  22. Chankvetadze B (2007) Enantioseparations by using capillary electrophoretic techniques. The story of 20 and a few more years. J Chromatogr A 1168:45–70

    Article  CAS  Google Scholar 

  23. Chankvetadze B (1997) Capillary electrophoresis in chiral analysis. Wiley, Chichester

    Google Scholar 

  24. Van Eeckhaut A, Michotte Y (eds) (2010) Chiral separations by capillary electrophoresis. Chromatogr Science Series, vol. 100. CRC Press, Boca Raton

    Google Scholar 

  25. Biedermann F, Nau WM, Schneider HJ (2014) The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as noncovalent driving force. Angew Chem Int Ed 53:11158–11171

    Article  CAS  Google Scholar 

  26. Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977

    Article  CAS  Google Scholar 

  27. Chankvetadze B (2002) Enantiomer migration order in chiral capillary electrophoresis. Electrophoresis 23:4022–4035

    Article  CAS  Google Scholar 

  28. Hammitzsch-Wiedemann M, Scriba GKE (2009) Mathematical approach by a selectivity model for rationalization of pH- and selector concentration-dependent reversal of the enantiomer migration order in capillary electrophoresis. Anal Chem 81:8765–8773

    Article  CAS  Google Scholar 

  29. Fillet M, Hubert P, Crommen J (2000) Enantiomeric separations of drugs using mixtures of charged and neutral cyclodextrins. J Chromatogr A 875:123–134

    Article  CAS  Google Scholar 

  30. Wätzig H, Degenhardt M, Kunkel A (1998) Strategies for capillary electrophoresis. Method development and validation for pharmaceutical and biological applications. Electrophoresis 19:2695–2752

    Article  Google Scholar 

  31. Rocheleau MJ (2005) Generic capillary electrophoresis conditions for chiral assay in early pharmaceutical development. Electrophoresis 26:2320–2329

    Article  CAS  Google Scholar 

  32. Dubský P, Svobodová J, Tesařová E, Gaš B (2010) Enhanced selectivity in CZE multi-chiral selector enantioseparation systems: proposed separation mechanism. Electrophoresis 31:1435–1441

    PubMed  Google Scholar 

  33. Evans CE, Stalcup AM (2003) Comprehensive strategy for chiral separations using sulfated cyclodextrins in capillary electrophoresis. Chirality 15:709–723

    Article  CAS  Google Scholar 

  34. Ates H, Mangelings D, Vander Heyden Y (2008) Fast generic chiral separation strategies using electrophoretic and liquid chromatographic techniques. J Pharm Biomed Anal 48:288–294

    Article  CAS  Google Scholar 

  35. Zhou L, Thompson R, Song S et al (2002) A strategic approach to the development of capillary electrophoresis chiral methods for pharmaceutical basic compounds using sulfated cyclodextrins. J Pharm Biomed Anal 27:541–553

    Article  CAS  Google Scholar 

  36. Williams BA, Vigh G (1997) Dry look at the CHARM (charged resolving agent migration) model of enantiomer separations by capillary electrophoresis. J Chromatogr A 777:295–309

    Article  CAS  Google Scholar 

  37. Liu L, Nussbaum MA (1999) Systematic screening approach for chiral separations of basic compounds by capillary electrophoresis with modified cyclodextrins. J Pharm Biomed Anal 19:679–694

    Article  CAS  Google Scholar 

  38. Jimidar MI, Van Ael W, Van Nyen P et al (2004) A screening strategy for the development of enantiomeric separation methods in capillary electrophoresis. Electrophoresis 25:2772–2785

    Article  CAS  Google Scholar 

  39. Souverain S, Geiser L, Rudaz S, Veuthey JL (2006) Strategies for rapid chiral analysis by capillary electrophoresis. J Pharm Biomed Anal 40:235–241

    Article  CAS  Google Scholar 

  40. Deeb SE, Hasemann P, Wätzig H (2008) Strategies in method development to quantify enantiomeric impurities using CE. Electrophoresis 29:3552–3562

    Article  Google Scholar 

  41. Servais AC, Crommen J, Fillet M (2010) Factors influencing cyclodextrin-mediated chiral separations. In: van Eeckhaut A, Michotte Y (eds) Chiral separations by capillary electrophoresis. Chromatogr science series, vol. 100. CRC Press, Boca Raton, pp 87–107

    Chapter  Google Scholar 

  42. Sentellas S, Saurina J (2003) Chemometrics in capillary electrophoresis. Part A: method for optimization. J Sep Sci 26:875–885

    Article  CAS  Google Scholar 

  43. Dejaegher B, Mangelings D, Vander Heyden Y (2012) Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview. Methods Mol Biol 970:409–427

    Article  Google Scholar 

  44. Orlandini S, Gotti R, Furlanetto S (2014) Multivariate optimization of capillary electrophoresis methods: a critical review. J Pharm Biomed Anal 87:290–307

    Article  CAS  Google Scholar 

  45. Orlandini S, Pinzauti S, Furlanetto S (2013) Application of quality by design to the development of analytical separation methods. Anal Bioanal Chem 405:443–450

    Article  CAS  Google Scholar 

  46. Chankvetadze B, Schulte G, Blaschke G (1996) Reversal of enantiomer elution order in capillary electrophoresis using charged and neutral cyclodextrins. J Chromatogr A 732:183–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Jáč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Scriba, G.K.E., Jáč, P. (2019). Cyclodextrins as Chiral Selectors in Capillary Electrophoresis Enantioseparations. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_18

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics