Skip to main content

High-Performance Liquid Chromatography Enantioseparations Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

Since their introduction by Daniel W. Armstrong in 1994, antibiotic-based chiral stationary phases have proven their applicability for the chiral resolution of various types of racemates. The unique structure of macrocyclic glycopeptides and their large variety of interactive sites (e.g., hydrophobic pockets, hydroxy, amino and carboxyl groups, halogen atoms, aromatic moieties) are the reasons for their wide-ranging selectivity. The commercially available Chirobiotic™ phases, which display complementary characteristics, are capable of separating a broad variety of enantiomeric compounds with good efficiency, good column loadability, high reproducibility, and long-term stability. These are the major reasons for the frequent use of macrocyclic antibiotic-based stationary phases in HPLC enantioseparations.

This overview chapter provides a brief summary of general aspects of antibiotic-based chiral stationary phases including their preparation and their application to direct enantioseparations of various racemates focusing on the literature published since 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong DW (1994) A new class of chiral selectors for enantiomeric separations by LC, TLC, GC, CE and SFC. In: Pittsburg conference abstracts. p. 572.

    Google Scholar 

  2. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid-chromatography. Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  3. Xiao TL, Armstrong DW (2004) Enantiomeric separation by HPLC using macrocyclic glycopeptide-based chiral stationary phases. In: Gübitz G, Schmid MG (eds) Chiral separations. Methods and protocols. Humana Press, Totowa, pp 113–171

    Google Scholar 

  4. Beesley TE, Scott RPW (1998) Chapter 8. In: Beesley TE, Scott RPW (eds) Chiral chromatography. Wiley, Chichester, pp 221–263

    Google Scholar 

  5. Bojarski J (1999) Antibiotics as electrophoretic and chromatographic chiral selectors. Wiadom Chem 53:235–247

    CAS  Google Scholar 

  6. Dolezalova M, Tkaczykova M (2000) Control of enantiomeric purity of drugs. Chem Listy 94:994–1003

    CAS  Google Scholar 

  7. Ward TJ, Farris AB (2001) Chiral separations using the macrocyclic antibiotics: a review. J Chromatogr A 906:73–89

    Article  CAS  PubMed  Google Scholar 

  8. Gasparrini F, D'Acquarica I, Misiti D, Pierini M, Villani C (2003) Natural and totally synthetic receptors in the innovative design of HPLC chiral stationary phases. Pure Appl Chem 75:407–412

    Article  CAS  Google Scholar 

  9. Dungelova M, Lehotay J, Rojkovicova T (2003) Chiral separations of drugs based on macrocyclic antibiotics in HPLC, SFC and CEC. Ceska Slov Farm 52:119–125

    CAS  PubMed  Google Scholar 

  10. Dungelova J, Lehotay J, Rojkovicova T (2004) HPLC chiral separations utilising macrocyclic antibiotics—a review. Chem Anal 49:1–17

    CAS  Google Scholar 

  11. Ali I, Kumerer K, Aboul-Enein HY (2006) Mechanistic principles in chiral separations using liquid chromatography and capillary electrophoresis. Chromatographia 63:295–307

    Article  CAS  Google Scholar 

  12. Beesley TE, Lee JT (2007) Chiral separation techniques, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  13. D’Acquarica I, Gasparrini F, Misiti D, Pierini M, Villani C (2008) HPLC chiral stationary phases containing macrocyclic antibiotics: practical aspects and recognition mechanism. Adv Chromatogr 46:109–173

    PubMed  Google Scholar 

  14. Ilisz I, Berkecz R, Péter A (2006) HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases: a review. J Sep Sci 29:1305–1321

    Article  CAS  PubMed  Google Scholar 

  15. Ilisz I, Berkecz R, Péter A (2009) Retention mechanism of high-performance liquid chromatographic enantioseparation on macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 1216:1845–1860

    Article  CAS  PubMed  Google Scholar 

  16. Ilisz I, Pataj Z, Péter A (2010) Macrocyclic glycopeptide-based chiral stationary phases in high performance liquid chromatographic analysis of amino acid enantiomers and related analogs. In: Fitzpatrick DW, Ulrich HJ (eds) Macrocyclic chemistry: new research developments. Nova Science Publishers, Hauppauge, pp 129–157

    Google Scholar 

  17. Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F (2011) Recent applications in chiral high performance liquid chromatography: a review. Anal Chim Acta 706:205–222

    Article  CAS  PubMed  Google Scholar 

  18. Scriba GKE (2012) Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75:815–838

    Article  CAS  Google Scholar 

  19. Ali I, Al-Othman ZA, Al-Warthan A, Asnin L, Chudinov A (2014) Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J Sep Sci 37:2447–2466

    Article  CAS  PubMed  Google Scholar 

  20. Al-Othman ZA, Al-Warthan A, Ali I (2014) Advances in enantiomeric resolution on monolithic chiral stationary phases in liquid chromatography and electrochromatography. J Sep Sci 37:1033–1057

    Article  CAS  PubMed  Google Scholar 

  21. Scriba GKE (2016) Chiral recognition in separation science—an update. J Chromatogr A 1467:56–78

    Article  CAS  PubMed  Google Scholar 

  22. Gasper M, Berthod A, Nair UB, Armstrong DW (1996) Comparison and modeling study of vancomycin, ristocetin A, and teicoplanin. Anal Chem 68:2501–2514

    Article  CAS  PubMed  Google Scholar 

  23. Gause GF, Brazhnikova MG, Lomakina NN, Berdnikova TF, Fedorova GB, Tokareva N, Borisova VN, Batta GY (1989) Eremomycin—new glycopeptide antibiotic: chemical properties and structure. J Antibiot 42:1790–1799

    Article  CAS  Google Scholar 

  24. Berdnikova TF, Shashkov AS, Katrukha GS, Lapchinskaya OA, Yurkevich NV, Grachev AA, Nifant’ev NE (2009) The structure of antibiotic eremomycin B. Russian J Bioorg Chem 35:497–503

    Article  CAS  Google Scholar 

  25. Nadkarni SR, Patel MV, Chatterjee S, Vijayakumar EK, Desikan KR, Blumbach J, Ganguli BN, Limbert M (1994) Balhimycin, a new glycopeptide antibiotic produced by Amycolatopsis sp. Y-86,21022. Taxonomy, production, isolation and biological activity. J Antibiot 47:334–341

    Article  CAS  Google Scholar 

  26. Chatterjee S, Vijayakumar EKS, Nadkarni SR, Patel MV, Blumbach J, Ganguli BN (1994) Balhimycin, a new glycopeptide antibiotic with an unusual hydrated 3-amino-4-oxoaldopyranose sugar moiety. J Org Chem 59:3480–3484

    Article  CAS  Google Scholar 

  27. Pelzer S, Süßmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W (1999) Identification and analysis of the balhimycin biosynthetic gene cluster and its use for manipulating glycopeptide biosynthesis in Amycolatopsis Mediterranei DSM5908. Antimicrob Agents Chemother 43:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856

    Article  PubMed  CAS  Google Scholar 

  29. Beesley TE, Lee JT (2009) Method development strategy and applications update for Chirobiotic chiral stationary phases. J Liquid Chrom & Related Tech 32:1733–1767

    Article  CAS  Google Scholar 

  30. Aboul-Enein HY, Ali I (2003) Macrocyclic glycopeptide antibiotics-based chiral stationary phases. In: Aboul-Enein HY, Wainer IW (eds) Chiral separations by liquid chromatography and related technologies. Marcel Dekker, Inc., New York, pp 137–175

    Chapter  Google Scholar 

  31. Hrobonova K, Lehotay J, Cizmarikova R, Armstrong DW (2001) Study of the mechanism of enantioseparation. I. Chiral analysis of alkylamino derivatives of aryloxypropanols by HPLC using macrocyclic antibiotics as chiral selectors. J Liquid Chrom & Related Tech 24:2225–2237

    Article  CAS  Google Scholar 

  32. Ghassempour A, Abdollahpour A, Tabar-Heydar K, Nabid MR, Mansouri S, Aboul-Enein H (2005) Crystalline degradation products of vancomycin as a new chiral stationary phase for liquid chromatography. Chromatographia 61:151–155

    Article  CAS  Google Scholar 

  33. Armstrong DW, DeMond W (1984) Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J Chromatogr Sci 22:411–415

    Article  CAS  Google Scholar 

  34. Petrusevska K, Kuznetsov MA, Gedicke K, Meshko V, Staroverov SM, Sidel-Morgenstern A (2006) Chromatographic enantioseparation of amino acids using a new chiral stationary phase based on a macrocyclic glycopeptide antibiotic. J Sep Sci 29:1447–1457

    Article  CAS  PubMed  Google Scholar 

  35. Staroverov SM, Kuznetsov MA, Nesterenko PN, Vasiarov GG, Katrukha GS, Fedorova GB (2006) New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica. J Chromatogr A 1108:263–267

    Article  CAS  PubMed  Google Scholar 

  36. Fedorova IA, Shapovalova EN, Shpigun OA, Staroverov SM (2016) Bovine serum albumin adsorbed on eremomycin and grafted on silica as new mixed-binary chiral sorbent for improved enantioseparation of drugs. J Food Drug Anal 24:848–854

    Article  CAS  PubMed  Google Scholar 

  37. Ernst-Cabrera K, Wilchek M (1986) Silica containing primary hydroxyl groups for high performance affinity chromatography. Anal Biochem 159:267–272

    Article  CAS  PubMed  Google Scholar 

  38. Svensson LA, Karlsson KE, Karlsson A, Vessman J (1998) Immobilized vancomycin as chiral stationary phase in packed capillary liquid chromatography. Chirality 10:273–280

    Article  CAS  Google Scholar 

  39. Dönnecke J, Svensson LA, Gyllenhaal O, Karlsson KE, Karlsson A, Vessman J (1999) Evaluation of a vancomycin chiral stationary phase in packed capillary supercritical fluid chromatography. J Microcol Sep 11:521–533

    Article  Google Scholar 

  40. Svensson LA, Dönnecke J, Karlsson KE, Karlsson A, Vessman J (1999) Vancomycin based chiral stationary phases for micro column liquid chromatography. Chirality 11:121–128

    Article  CAS  Google Scholar 

  41. Wikström H, Svensson LA, Torstensson A, Owens PK (2000) Immobilisation and evaluation of a vancomycin chiral stationary phase for capillary electrochromatography. J Chromatogr A 869:395–409

    Article  PubMed  Google Scholar 

  42. Desiderio C, Aturki Z, Fanali S (2001) Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds. Electrophoresis 22:535–543

    Article  CAS  PubMed  Google Scholar 

  43. Svensson LA, Owens PK (2000) Enantioselective supercritical fluid chromatography using ristocetin A chiral stationary phases. Analyst 125:1037–1039

    Article  CAS  PubMed  Google Scholar 

  44. Fanali S, Catarcini P, Presutti C, Stancanelli R, Quaglia MG (2003) Use of short-end injection capillary packed with a glycopeptide antibiotic stationary phase in electrochromatography and capillary liquid chromatography for the enantiomeric separation of hydroxy acids. J Chromatogr A 990:143–151

    Article  CAS  PubMed  Google Scholar 

  45. Fanali S, Catarcini P, Presutti C (2003) Enantiomeric separation of acidic compounds of pharmaceutical interest by capillary electrochromatography employing glycopeptide antibiotic stationary phases. J Chromatogr A 994:227–232

    Article  CAS  PubMed  Google Scholar 

  46. D’Acquarica I (2000) New synthetic strategies for the preparation of novel chiral stationary phases for high-performance liquid chromatography containing natural pool selectors. J Pharm Biomed Anal 23:3–13

    Article  PubMed  Google Scholar 

  47. Chirobiotic Handbook, 5th ed. Guide to using macrocyclic glycopeptide bonded phases for chiral LC separations. Whippany, NJ: Astec, Advanced Separation Technologies Inc.; 2004.

    Google Scholar 

  48. Berthod A, Yu T, Kullman JP, Armstrong DW, Gasparrini F, D’Acquarica I, Misiti D, Carotti A (2000) Evaluation of the macrocyclic glycopeptide A-40,926 as a high-performance liquid chromatographic chiral selector and comparison with teicoplanin chiral stationary phase. J Chromatogr A 897:113–129

    Article  CAS  PubMed  Google Scholar 

  49. Berthod A, Chen X, Kullman JP, Armstrong DW, Gasparrini F, D’Acquarica I, Villani C, Carotti A (2000) Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phases. Anal Chem 72:1767–1780

    Article  CAS  PubMed  Google Scholar 

  50. Diana J, Visky D, Roets E, Hoogmartens J (2003) Development and validation of an improved method for the analysis of vancomycin by liquid chromatography. Selectivity of reversed-phase columns towards vancomycin components. J Chromatogr A 996:115–131

    Article  CAS  PubMed  Google Scholar 

  51. Anan’eva A, Polyakova Ya A, Shapovalova EN, Mazhuga AG, Shpigun OA (2018) Separation of β-blocker enantiomers on silica modified with gold nanoparticles with immobilized macrocyclic antibiotic vancomycin. J Anal Chem 73:152–115

    Article  Google Scholar 

  52. Yu B, Zhang S, Li G, Cong H (2018) Light-assisted preparation of vancomycin chiral stationary phase based on diazotized silica and its enantioseparation evaluation by high-performance liquid chromatography. Talanta 182:171–177

    Article  CAS  PubMed  Google Scholar 

  53. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78:2093–2099

    Article  PubMed  Google Scholar 

  54. Berthod A (2009) Chiral recognition mechanisms with macrocyclic glycopeptide selectors. Chirality 21:167–175

    Article  CAS  PubMed  Google Scholar 

  55. Berthod A, Qiu HX, Staroverov S, Kuznestov MA, Armstrong DW (2010) Chiral recognition with macrocyclic glycopeptides: mechanisms and applications. In: Berthod A (ed) Chiral recognition in separation methods: mechanisms and applications. Springer, Heidelberg, pp 203–222

    Chapter  Google Scholar 

  56. Ilisz I, Pataj Z, Aranyi A, Péter A (2012) Macrocyclic antibiotic selectors in direct HPLC enantioseparations. Sep Pur Rev 41:207–249

    Article  CAS  Google Scholar 

  57. El Deeb S (2010) Evaluation of a Vancomycin-based LC column in enantiomeric separation of atenolol: method development, repeatability study and enantiomeric impurity determination. Chromatographia 71:783–787

    Article  CAS  Google Scholar 

  58. Yang J, Lu XM, Bi YJ, Qin F, Li FM (2007) Chiral separation of duloxetine and its R-enantiomer by LC. Chromatographia 66:389–393

    Article  CAS  Google Scholar 

  59. Xu Z, Zhou N, Xu X, Xu XX (2007) Enantioseparation of rivastigmine by high performance liquid chromatography using vancomycin chiral stationary phase. Chin J Anal Chem 35:1043–1046

    CAS  Google Scholar 

  60. Zuo Z, Wo SK, Lo CMY, Zhou L, Cheng G, You JHS (2010) Simultaneous measurement of S-warfarin, R-warfarin, S-7-hydroxywarfarin and R-7-hydroxywarfarin in human plasma by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 52:305–310

    Article  CAS  PubMed  Google Scholar 

  61. Malakova J, Pavek P, Svecova L, Jokesova I, Zivny P, Palicka V (2009) New high-performance liquid chromatography method for the determination of (R)-warfarin and (S)-warfarin using chiral separation on a glycopeptide-based stationary phase. J Chromatogr B 877:3226–3230

    Article  CAS  Google Scholar 

  62. Liu W, Wang F, Li H (2007) Simultaneous stereoselective analysis of venlafaxine and O-desmethylvenlafaxine enantiomers in human plasma by HPLC-ESI/MS using a vancomycin chiral column. J Chromatogr B 850:183–189

    Article  CAS  Google Scholar 

  63. Hefnawy MM, Al-Shehri MM (2010) Chiral stability-indicating HPLC method for analysis of arotinolol in pharmaceutical formulation and human plasma. Arabian J Chem 3:147–153

    Article  CAS  Google Scholar 

  64. Hefnawy MM, Sultan MA, Al-Shehri MM (2007) HPLC separation technique for analysis of bufuralol enantiomers in plasma and pharmaceutical formulations using a vancomycin chiral stationary phase and UV detection. J Chromatogr B 856:328–336

    Article  CAS  Google Scholar 

  65. Hashem H, Tründelberg C, Attef O, Jira T (2011) Effect of chromatographic conditions on liquid chromatographic chiral separation of terbutaline and salbutamol on Chirobiotic V column. J Chromatogr A 1218:6727–6731

    Article  CAS  PubMed  Google Scholar 

  66. Rao RN, Kumar KN, Ramakrishna S (2011) Enantiomeric separation of mirtazapine and its metabolite in rat plasma by reverse polar ionic liquid chromatography using fluorescence and polarimetric detectors connected in series. J Chromatogr B-Anal Techn Biomed Life Sci 879:1911–1916

    Article  CAS  Google Scholar 

  67. Hefnawy MM, Asiri AJ, Al-Zoman NZ, Mostafa GA, Aboul-Enein HY (2011) Stereoselective HPLC analysis of tertatolol in rat plasma using macrocyclic antibiotic chiral stationary phase. Chirality 23:333–338

    Article  CAS  PubMed  Google Scholar 

  68. Jing L, Li K, Qin F, Wang X, Pan L, Wang Y, Cheng M, Li F (2012) Determination of L-trantinterol in rat plasma by using chiral liquid chromatography-tandem mass spectrometry. J Sep Sci 35:2678–2684

    Article  CAS  PubMed  Google Scholar 

  69. Qin F, Wang Y, Wang L, Zhao L, Pan L, Cheng M, Li F (2015) Determination of trantinterol enantiomers in human plasma by high-performance liquid chromatography—tandem mass spectrometry using vancomycin chiral stationary phase and solid phase extraction and stereoselective pharmacokinetic application. Chirality 27:327–331

    Article  CAS  PubMed  Google Scholar 

  70. Wagdy HA, Hanafi RS, El-Nashar RM, Aboul-Enein HY (2013) Predictability of enantiomeric chromatographic behavior on various chiral stationary phases using typical reversed phase modeling software. Chirality 25:506–513

    Article  CAS  PubMed  Google Scholar 

  71. Hefnawy MM, Al-Shehri MM, Abounassif MA, Mostafa GAE (2013) Enantioselective quantification of atenolol in mouse plasma by high performance liquid chromatography using a chiral stationary phase: application to a pharmacokinetic study. J AOAC Int 96:976–980

    Article  CAS  PubMed  Google Scholar 

  72. Ribeiro AR, Afonso CM, Castro PML, Tiritan ME (2013) Enantioselective HPLC analysis and biodegradation of atenolol, metoprolol and fluoxetine. Environ Chem Lett 11:83–90

    Article  CAS  Google Scholar 

  73. Ribeiro AR, Afonso CM, Castro PML, Tiritan ME (2013) Enantioselective biodegradation of pharmaceuticals, alprenolol and propranolol, by an activated sludge inoculum. Ecotox Environ Safe 87:108–114

    Article  CAS  Google Scholar 

  74. Ribeiro AR, Maia AS, Moreira IS, Afonso CM, Castro PML, Tiritan ME (2014) Enantioselective quantification of fluoxetine and norfluoxetine by HPLC CrossMark in wastewater effluents. Chemosphere 95:589–596

    Article  CAS  PubMed  Google Scholar 

  75. Wang T, Shen B, Shi Y, Xiang P, Yu Z (2015) Chiral separation and determination of R/S-methamphetamine and its metabolite R/S-amphetamine in urine using LC-MS/MS. Forensic Sci Int 246:72–78

    Article  CAS  PubMed  Google Scholar 

  76. Popovic A, McBriar T, He P, Beavis A (2017) Chiral determination and assay of optical isomers in clandestine drug laboratory samples using LC-MSMS. Anal-Methods UK 9:3380–3387

    Article  CAS  Google Scholar 

  77. Gherdaoui D, Bekdouche H, Zerkout S, Fegas R, Righezza M (2016) Chiral separation of ketoprofen on an achiral NH2 column by HPLC using vancomycin as chiral mobile phase additive. J Iran Chem Soc 13:2319–2323

    Article  CAS  Google Scholar 

  78. Boronova K, Lehotay J, Hrobonova K, Armstrong DW (2013) Study of physicochemical interaction of aryloxyaminopropanol derivatives with teicoplanin and vancomycin phases in view of quantitative structure-property relationship studies. J Chromatogr A 1301:38–47

    Article  CAS  PubMed  Google Scholar 

  79. Ramisetti NR, Bompelli S (2014) LC-MS/MS determination of cinacalcet enantiomers in rat plasma on Chirobiotic V column in polar ionic mode: application to a pharmacokinetic study. Biomed Chromatogr 28:1846–1853

    Article  CAS  PubMed  Google Scholar 

  80. Phyo YZ, Cravo S, Palmeira A, Tiritan ME, Kijjoa A, Pinto MMM, Fernandes C (2018) Enantiomeric resolution and docking studies of chiral xanthonic derivatives on chirobiotic columns. Molecules 23(1). pii: E142). https://doi.org/10.3390/molecules23010142

    Article  PubMed Central  CAS  Google Scholar 

  81. Abdollahpour A, Heydari R, Shamsipur M (2017) Two synthetic methods for preparation of chiral stationary phases using crystalline degradation products of vancomycin: column performance for enantioseparation of acidic and basic drugs. AAPS Pharm Sci Tech 18:1855–1862

    Article  CAS  Google Scholar 

  82. Mojtahedi MM, Chaiavi S, Ghassempour A, Tabar-Heydar K, Sharif SJG, Malekzadeh M, Aboul-Enein HY (2007) Chiral separation of three agrochemical toxins enantiomers by high-performance liquid chromatography on a vancomycin crystalline degradation products-chiral stationary phase. Biomed Chromatogr 21:234–240

    Article  CAS  PubMed  Google Scholar 

  83. Boesten JMM, Berkheij M, Schoemaker HE, Hiemstra H, Duchateau ALL (2006) Enantioselective high-performance liquid chromatographic separation of N-methyloxycarbonyl unsaturated amino acids on macrocyclic glycopeptide stationary phases. J Chromatogr A 1108:26–30

    Article  CAS  PubMed  Google Scholar 

  84. Zhao J, Golozoubova V, Cannon B, Nedergaard J (2001) Arotinolol is a weak partial agonist on beta 3-adrenergic receptors in brown adipocytes. Can J Physiol Pharmacol 79:585–593

    Article  CAS  PubMed  Google Scholar 

  85. Xiao TL, Tesarova E, Anderson JL, Egger M, Armstrong DW (2006) Evaluation and comparison of a methylated teicoplanin aglycone to teicoplanin aglycone and natural teicoplanin chiral stationary phases. J Sep Sci 29:429–445

    Article  CAS  PubMed  Google Scholar 

  86. Honetschlagerova VM, Srkalova S, Bosakova Z, Coufal P, Tesarova E (2009) Comparison of enantioselective HPLC separation of structurally diverse compounds on chiral stationary phases with different teicoplanin coverage and distinct linkage chemistry. J Sep Sci 32:1704–1711

    Article  CAS  Google Scholar 

  87. Poplewska KR, Pitkowski W, Seidel-Morgenstern A, Antos D (2007) Influence of preferential adsorption of mobile phase on retention behavior of amino acids on the teicoplanin chiral selector. J Chromatogr A 1173:58–70

    Article  CAS  Google Scholar 

  88. Haroun M, Ravelet C, Grosset C, Ravel A, Villet A, Peyrin E (2006) Reversal of the enantiomeric elution order of some aromatic amino acids using reversed-phase chromatographic supports coated with the teicoplanin chiral selector. Talanta 68:1032–1036

    Article  CAS  PubMed  Google Scholar 

  89. Pataj Z, Ilisz I, Aranyi A, Forro E, Fülöp F, Armstrong DW, Péter A (2010) LC separation of γ-amino acid enantiomers. Chromatographia 71:13–19

    Article  CAS  Google Scholar 

  90. Berkecz R, Ilisz I, Benedek G, Fülöp F, Armstrong DW, Péter A (2009) High-performance liquid chromatographic enantioseparation of 2-aminomono- and dihydroxycyclopentanecarboxylic and 2-aminodihydroxycyclohexanecarboxylic acids on macrocyclic glycopeptide-based phases. J Chromatogr A 1216:927–932

    Article  CAS  PubMed  Google Scholar 

  91. Sipos L, Ilisz I, Pataj Z, Szakonyi Z, Fülöp F, Armstrong DW, Péter A (2010) High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases. J Chromatogr A 1217:6956–6963

    Article  CAS  PubMed  Google Scholar 

  92. Bechtold M, Felinger A, Held M, Panke S (2007) Adsorption behavior of a teicoplanin aglycone bonded stationary phase under harsh overload conditions. J Chromatogr A 1154:277–286

    Article  CAS  PubMed  Google Scholar 

  93. Sipos L, Ilisz I, Nonn M, Fülöp F, Pataj Z, Armstrong DW, Péter A (2012) High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 1232:142–151

    Article  CAS  PubMed  Google Scholar 

  94. Pataj Z, Ilisz I, Grecsó N, Palkó M, Fülöp F, Armstrong DW, Péter A (2014) Enantiomeric separation of bicyclo[2.2.2]octane-based 2-amino-3-carboxylic acids on macrocyclic glycopeptide chiral stationary phases. Chirality 26:200–208

    Article  CAS  PubMed  Google Scholar 

  95. Ilisz I, Grecsó N, Forró E, Fülöp F, Armstrong DW (2015) High-performance liquid chromatographic separation of paclitaxel intermediate phenylisoserine derivatives on macrocyclic glycopeptide and cyclofructan-based chiral stationary phases. J Pharm Biomed Anal 114:312–320

    Article  CAS  PubMed  Google Scholar 

  96. Barhate CL, Wahab MF, Breitbach ZS, Bell DS, Armstrong DW (2015) High efficiency, narrow particle size distribution, sub-2 μm based macrocyclic glycopeptide chiral stationary phases in HPLC and SFC. Anal Chim Acta 898:128–137

    Article  CAS  PubMed  Google Scholar 

  97. Orosz T, Grecso N, Gy L, Zs S, Fülöp F, Armstrong DW, Ilisz I, Péter A (2017) Liquid chromatographic enantioseparation of carbocyclic beta-amino acids possessing limonene skeleton on macrocyclic glycopeptide-based chiral stationary phases. J Biomed Anal 145:119–126

    Article  CAS  Google Scholar 

  98. Fuereder M, Panke S, Bechtold M (2012) Simulated moving bed enantioseparation of amino acids employing memory effect-constrained chromatography columns. J Chromatogr A 1236:123–131

    Article  CAS  PubMed  Google Scholar 

  99. Kucerova G, Vozka J, Kalikova K, Geryk R, Plecita D, Pajpanova T, Tesarova E (2013) Enantioselective separation of unusual amino acids by high performance liquid chromatography. Sep Purif Technol 119:123–128

    Article  CAS  Google Scholar 

  100. Barbaro E, Zangrando R, Vecchiato M, Turetta C, Barbante C, Gambaro A (2014) d- and l-amino acids in Antarctic lakes: assessment of a very sensitive HPLC-MS method. Anal Bioanal Chem 406:5259–5270

    Article  CAS  PubMed  Google Scholar 

  101. Sardella R, Ianni F, Lisanti A, Scorzoni S, Marini F, Sternativo S, Natalini B (2014) Direct chromatographic enantioresolution of fully constrained beta-amino acids: exploring the use of high-molecular weight chiral selectors. Amino Acids 46:1235–1242

    Article  CAS  PubMed  Google Scholar 

  102. Deakova Z, Durackova Z, Armstrong DW, Lehotay J (2015) Separation of enantiomers of selected sulfur-containing amino acids by using serially coupled achiral-chiral columns. J Liquid Chromatogr Rel Technol 38:789–794

    Article  CAS  Google Scholar 

  103. Deakova Z, Durackova Z, Armstrong DW, Lehotay J (2015) Two-dimensional high performance liquid chromatography for determination of homocysteine, methionine and cysteine enantiomers in human serum. J Chromatogr A 1408:118–124

    Article  CAS  PubMed  Google Scholar 

  104. Bystricka Z, Bystricky R, Lehotay J (2016) Thermodynamic study of HPLC enantioseparations of some sulfur-containing amino acids on teicoplanin columns in ion-pairing reversed-phase mode. J Liquid Chromatogr Rel Technol 39:775–781

    Article  CAS  Google Scholar 

  105. Wagdy HA, Hanafi RS, El-Nashar RM, Aboul-Enein HY (2014) Enantiomeric separation of underivatized amino acids: predictability of chiral recognition on ristocetin A chiral stationary phase. Chirality 26:132–135

    Article  CAS  PubMed  Google Scholar 

  106. Ismail OH, Ciogli A, Villani C, Martino MD, Pierini M, Cavazznini A, Bell DS, Gasparrini F (2016) Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2 μm totally porous silica particles of narrow size distribution. J Chromatogr A 1427:55–68

    Article  CAS  PubMed  Google Scholar 

  107. Min Y, Sui Z, Liang Z, Zhang L, Zhang Y (2015) Teicoplanin bonded sub-2-μm superficially porous particles for enantioseparation of native amino acids. J Pharm Biomed Anal 114:247–253

    Article  CAS  PubMed  Google Scholar 

  108. Sanchez-Hernandez L, Bernal JL, Jesus del Nozal M (2016) Chiral analysis of aromatic amino acids in food supplements using subcritical fluid chromatography and Chirobiotic T2 column. J Supercrit Fluid 107:519–525

    Article  CAS  Google Scholar 

  109. Zhang YZ, Holliman C, Tang D, Fast D, Michael S (2008) Development and validation of a direct enantiomeric separation of pregabalin to support isolated perfused rat kidney studies. J Chromatogr B 875:148–153

    Article  CAS  Google Scholar 

  110. Al-Majed AA (2009) A direct HPLC method for the resolution and quantitation of the R-(−)- and S-(+)-enantiomers of vigabatrin (γ-vinyl-GABA) in pharmaceutical dosage forms using teicoplanin aglycone chiral stationary phase. J Pharm Biomed Anal 50:96–99

    Article  CAS  PubMed  Google Scholar 

  111. Hefnawy MM, Sultan MAA, Al-Shehri MM (2007) Enantioanalysis of bisoprolol in human plasma with a macrocyclic antibiotic HPLC chiral column using fluorescence detection and solid phase extraction. Chem Pharm Bull 55:227–230

    Article  CAS  Google Scholar 

  112. Rojkovicova T, Lehotay J, Armstrong DW, Cizmarik J (2006) Study of the mechanism of enantioseparation. Part XII. Comparison study of thermodynamic parameters on separation of phenylcarbamic acid derivatives by HPLC using macrocyclic glycopeptide chiral stationary phases. J Liq Chrom Rel Techn 29:2615–2624

    Article  CAS  Google Scholar 

  113. Hrobonova K, Lehotay J, Cizmarikova R (2005) HPLC separation of enantiomers of some potential beta-blockers of the aryloxyaminopropanol type using macrocyclic antibiotic chiral stationary phases—studies of the mechanism of enantioseparation, Part XI. Pharmazie 60:888–891

    CAS  PubMed  Google Scholar 

  114. Luo W, Zhu L, Deng J, Liu A, Guo B, Tan W, Dai R (2010) Simultaneous analysis of bambuterol and its active metabolite terbutaline enantiomers in rat plasma by chiral liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 52:227–231

    Article  CAS  PubMed  Google Scholar 

  115. Aparasu RR, Jano E, Johnson ML, Chen H (2008) Hospitalization risk associated with typical and atypical antipsychotic use in community-dwelling elderly patients. Am J Geriatr Pharmacother 6:198–204

    Article  PubMed  Google Scholar 

  116. Malma M, Bergqvista Y (2007) Determination of eflornithine enantiomers in plasma, by solid-phase extraction and liquid chromatography with evaporative light-scattering detection. J Chromatogr B 846:98–104

    Article  CAS  Google Scholar 

  117. Fernandes C, Tiritan ME, Cass Q, Kairys V, Fernandes XM, Pinto M (2012) Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases. J Chromatogr A 1241:60–68

    Article  CAS  PubMed  Google Scholar 

  118. Morante-Zarcero S, Sierra I (2012) Comparative HPLC methods for beta-blockers separation using different types of chiral stationary phases in normal phase and polar organic phase elution modes. Analysis of propranolol enantiomers in natural waters. J Pharm Biomed Anal 62:33–41

    Article  CAS  PubMed  Google Scholar 

  119. Poggi JC, Da Silva FG, Coelho EB, Marques PM, Bertucci C, Lanchote LV (2012) Analysis of carvedilol enantiomers in human plasma using chiral stationary phase column and liquid chromatography with tandem mass spectrometry. Chirality 24:209–214

    Article  CAS  PubMed  Google Scholar 

  120. He X, Lin R, He H, Sun M, Xiao D (2012) Chiral separation of ketoprofen on a chirobiotic T column and its chiral recognition mechanisms. Chromatographia 75:1355–1363

    Article  CAS  Google Scholar 

  121. Camacho-Munoz D, Kasprzyk-Hordern B (2017) Simultaneous enantiomeric analysis of pharmacologically active compounds in environmental samples by chiral LC–MS/MS with a macrocyclic antibiotic stationary phase. J Mass Spectrom 52:94–108

    Article  CAS  PubMed  Google Scholar 

  122. Ravichandran S, Collins JR, Singh N, Wainer IW (2012) A molecular model of the enantioselective liquid chromatographic separation of (R,S)-ifosfamide and its N-dechloroethylated metabolites on a teicoplanin aglycon chiral stationary phase. J Chromatogr A 1269:218–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gondova T, Petrovaj J, Kutschy P, Curillova Z, Salayova A, Fabian M, Armstrong DW (2011) Enantioseparation of novel amino analogs of indole phytoalexins on macrocyclic glycopeptide-based chiral stationary phase. Chromatographia 74:751–757

    Article  CAS  Google Scholar 

  124. Bertucci C, Pistolozzi M, Tedesco D, Zanasi R, Ruzziconi R, Pietra DMA (2012) Stereochemical characterization of fluorinated 2-(phenanthren-1-yl)propionic acids by enantioselective high performance liquid chromatography analysis and electronic circular dichroism detection. J Chromatogr A 1232:128–133

    Article  CAS  PubMed  Google Scholar 

  125. Diao X, Ma Z, Lei P, Zhong D, Zhang Y, Chen X (2013) Enantioselective determination of 3-n-butylphthalide (NBP) in human plasma by liquid chromatography on a teicoplanin-based chiral column coupled with tandem mass spectrometry. J Chromatogr B 939:67–72

    Article  CAS  Google Scholar 

  126. Rosales-Conrado N, Dell’Aica M, Eugenia de Leon-Gonzalez M, Perez-Arribas LV, Polo-Diez LM (2013) Determination of salbutamol by direct chiral reversed-phase HPLC using teicoplanin as stationary phase and its application to natural water analysis. Biomed Chromatogr 27:1413–1422

    Article  CAS  PubMed  Google Scholar 

  127. Harvanova M, Gondova T (2017) New enantioselective LC method development and validation for the assay of modafinil. J Pharm Biomed Anal 138:267–271

    Article  CAS  PubMed  Google Scholar 

  128. Shu Y, Lang JC, Breitbach ZS, Qiu H, Smuts JP, Kiyono-Shimobe M, Yasuda M, Armstrong DW (2015) Separation of therapeutic peptides with cyclofructan and glycopeptide based columns in hydrophilic interaction liquid chromatography. J Chromatogr A 1390:50–61

    Article  CAS  PubMed  Google Scholar 

  129. Wimalasinghe RM, Breitbach ZS, Lee JT, Armstrong DW (2017) Separation of peptides on superficially porous particle based macrocyclic glycopeptide liquid chromatography stationary phases: consideration of fast separations. Anal Bioanal Chem 409:2437–2447

    Article  CAS  PubMed  Google Scholar 

  130. Hellinghausen G, Roy D, Wang Y, Lee JT, Lopez DA, Weatherly CA, Armstrong DW (2018) A comprehensive methodology for the chiral separation of 40 tobacco alkaloids and their carcinogenic E/Z-(R,S)-tobacco-specific nitrosamine metabolites. Talanta 181:132–141

    Article  CAS  PubMed  Google Scholar 

  131. Barhate CL, Lopez DA, Makarov AA, Bu X, Morris WJ, Lekhal A, Hartman R, Armstrong DW (2018) Macrocyclic glycopeptide chiral selectors bonded to core-shell particles enables enantiopurity analysis of the entire verubecestat synthetic route. J Chromatogr A 1539:87–92

    Article  CAS  PubMed  Google Scholar 

  132. Feder-Kubis J, Flieger J, Tatarczak-Michalewska M, Plazinska A, Madejska A, Swatko-Ossor M (2017) Renewable sources from plants as the starting material for designing new terpene chiral ionic liquids used for the chromatographic separation of acidic enantiomers. RSC Adv 7:32344–32356

    Article  CAS  Google Scholar 

  133. Flieger J, Feder-Kubis J, Tatarczak-Michalewska M, Plazinska A, Madejska A, Swatko-Ossor M (2017) Natural terpene derivatives as new structural task-specific ionic liquids to enhance the enantiorecognition of acidic enantiomers on teicoplanin-based stationary phase by high-performance liquid chromatography. J Sep Sci 40:2374–2381

    Article  CAS  PubMed  Google Scholar 

  134. Maia AS, Castro PML, Tiritan ME (2016) Integrated liquid chromatography method in enantioselective studies: Biodegradation of ofloxacin by an activated sludge consortium. J Chromatogr B 1029–1030:174–183

    Article  CAS  Google Scholar 

  135. Mericko D, Lehotay J, Skacani I (2006) Effect of temperature on retention and enantiomeric separation of chiral sulfoxides using teicoplanin aglycone chiral stationary phase. J Liq Chrom Rel Techn 29:623–638

    Article  CAS  Google Scholar 

  136. Mericko D, Lehotay J, Skacani I (2007) Separation and thermodynamic studies of chiral sulfoxides on teicoplanin-based stationary phase. J Liq Chrom Rel Techn 30:1401–1420

    Article  CAS  Google Scholar 

  137. Mericko D, Lehotay J, Cizmarik J (2008) Enantioseparation of chiral sulfoxides using teicoplanin chiral stationary phases and kinetic study of decomposition in human plasma. Pharmazie 63:854–859

    CAS  PubMed  Google Scholar 

  138. Villani C, Laleu B, Mobian P, Lacour J (2007) Effective HPLC resolution of [4] heterohelicenium dyes on chiral stationary phases using reversed-phase eluents. Chirality 19:601–606

    Article  CAS  PubMed  Google Scholar 

  139. Sun P, Krishnan A, Yadav A, MacDonnell FM, Armstrong DW (2008) Enantioseparations next term of chiral ruthenium(II) polypyridyl complexes using HPLC with macrocyclic glycopeptide chiral stationary phases (CSPs). J Mol Struct 890:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Crofford LJ, Rowbotham MC, Mease PJ, Russell IJ, Dworkin RH, Corbin AE, Young JP, LaMoreaux LK, Martin SA, Sharma U (2005) Pregabalin for the treatment of fibromyalgia syndrome: results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 52:1264–1273

    Article  CAS  PubMed  Google Scholar 

  141. Svanfelt J, Eriksson J, Kronberg L (2010) Analysis of thyroid hormones in raw and treated wastewater. J Chromatogr A 1217:6469–6474

    Article  CAS  PubMed  Google Scholar 

  142. Koidl J, Hodl H, Schmid MG, Neubauer B, Konrad M, Petschauer S, Gubitz G (2008) Enantiorecognition of triiodothyronine and thyroxine enantiomers using different chiral selectors by HPLC and micro-HPLC. J Biochem Biophysical Meth 70:1254–1260

    Article  CAS  Google Scholar 

  143. Gondova T, Petrovaj J, Sucha M, Armstrong DW (2011) Stereoselective HPLC determination of thyroxine enantiomers in pharmaceuticals. J Liquid Chromatogr Rel Technol 34:2304–2314

    Article  CAS  Google Scholar 

  144. Bühring KU, Sailer H, Faro HP, Leopold G, Pabst J, Garbe A (1986) Pharmacokinetics and metabolism of bisoprolol-14C in three animal species and in humans. J Cardiovasc Pharmacol 11:21–28

    Google Scholar 

  145. Jiang H, Li Y, Pelzer M, Cannon JM, Randlett C, Junga H, Jiang X, Qin C, Ji CQ (2008) Determination of molindone enantiomers in human plasma by high-performance liquid chromatography–tandem mass spectrometry using macrocyclic antibiotic chiral stationary phases. J Chromatogr A 1192:230–238

    Article  CAS  PubMed  Google Scholar 

  146. Wolf JE, Shander D, Huber F, Jackson J, Lin CS, Mathes BM, Schrode K (2007) Randomized, double-blind clinical evaluation of the efficacy and safety of topical eflornithine HCl 13.9% cream in the treatment of women with facial hair. Int J Dermatol 46:94–98

    Article  CAS  PubMed  Google Scholar 

  147. Zhang L, Gedicke K, Kuznetsov MA, Staroverov SM, Seidel-Morgenstern A (2007) Application of an eremomycin-chiral stationary phase for the separation of dl-methionine using simulated moving bed technology. J Chromatogr A 1162:90–96

    Article  CAS  PubMed  Google Scholar 

  148. Fedorova IA, Shapovalova EN, Shpigun OA (2017) Separation of β-blocker and amino acid enantiomers on a mixed chiral sorbent modified with macrocyclic antibiotics eremomycin and vancomycin. J Anal Chem 72:76–82

    Article  CAS  Google Scholar 

  149. Blinov AS, Reshetova EN (2014) Effect of the concentration of organic modifier in an aqueous-ethanol mobile phase on the chromatographic retention and thermodynamic characteristics of the adsorption of enantiomers of α-phenylcarboxylic acids on silica gel with immobilized eremomycin antibiotic. Russ J Phys Chem A 88:1778–1784

    Article  CAS  Google Scholar 

  150. Zhang XT, Bao Y, Huang K, Barnett-Rundlett KL, Armstrong DW (2010) Evaluation of dalbavancin as chiral selector for HPLC and comparison with teicoplanin-based chiral stationary phases. Chirality 22:495–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Péter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Ilisz, I., Orosz, T., Péter, A. (2019). High-Performance Liquid Chromatography Enantioseparations Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_12

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics