Skip to main content

Recognition Mechanisms of Chiral Selectors: An Overview

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

Stereospecific recognition of chiral molecules plays an important role in nature as the basis of the interaction of chiral bioactive compounds with the chiral target structures. In separation sciences such as chromatographic and capillary electromigration techniques, interactions between chiral analytes and chiral selectors, i.e., the formation of transient diastereomeric complexes in thermodynamic equilibria, are the basis for chiral separations. Due to the large structural variety of chiral selectors, different structural features contribute to the overall chiral recognition process. This introductory chapter briefly summarizes the present understanding of the structural enantioselective recognition processes for various types of chiral selectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carrol L (1871) Through the looking-glass and what Alice found there. Macmillan, London

    Google Scholar 

  2. Berthod A (2010) Chiral recognition in separation methods. Springer, Heidelberg

    Google Scholar 

  3. Scriba GKE (2013) Chiral recognition in separation science: an overview. In: Scriba GKE (ed) Chiral separations: methods and protocols, 2nd edn. Humana Press, New York

    Google Scholar 

  4. Ciogli A, Kotoni D, Gasparrini F et al (2013) Chiral supramolecular selectors for enantiomer differentiation in liquid chromatography. Top Curr Chem 349:73–106

    Google Scholar 

  5. Scriba GKE (2013) Differentiation of enantiomers by capillary electrophoresis. Top Curr Chem 340:209–276

    CAS  PubMed  Google Scholar 

  6. Berthod A (2006) Chiral recognition mechanisms. Anal Chem 78:2093–2099

    PubMed  Google Scholar 

  7. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856

    PubMed  Google Scholar 

  8. Scriba GKE (2012) Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75:815–838

    CAS  Google Scholar 

  9. Scriba GKE (2016) Chiral recognition in separation science – an update. J Chromatogr A 1467:56–78

    CAS  PubMed  Google Scholar 

  10. Lang C, Armstrong DW (2017) Chiral surfaces: the many faces of chiral recognition. Curr Opin Colloid Interface Sci 32:94–107

    CAS  Google Scholar 

  11. Schneider HJ (2009) Binding mechanisms in supramolecular complexes. Angew Chem Int Ed 48:3924–3977

    CAS  Google Scholar 

  12. Peluso P, Mamane V, Cossu S (2015) Liquid chromatography enantioseparations of halogenated compounds on polysaccharide-based chiral stationary phases: role of halogen substituents in molecular recognition. Chirality 27:667–684

    CAS  PubMed  Google Scholar 

  13. Biedermann F, Nau WM, Schneider JH (2014) The hydrophobic effect revisited - studies with supramolecular complexes imply high-energy water as noncovalent driving force. Angew Chem Int Ed 53:11158–11171

    CAS  Google Scholar 

  14. Yang G, Xu Y (2011) Vibrational circular dichroism spectroscopy of chiral molecules. Top Curr Chem 298:189–236

    CAS  PubMed  Google Scholar 

  15. Uccello-Barretta G, Vanni L, Balzano F (2010) Nuclear magnetic resonance approaches to the rationalization of chromatographic enantiorecognition processes. J Chromatogr A 1217:928–940

    CAS  PubMed  Google Scholar 

  16. Salgado A, Chankvetadze B (2016) Applications of nuclear magnetic resonance spectroscopy for the understanding of enantiomer separation mechanisms in capillary electrophoresis. J Chromatogr A 1467:95–114

    CAS  PubMed  Google Scholar 

  17. Lipkowitz KB (2001) Atomistic modeling of enantioselection in chromatography. J Chromatogr A 906:417–442

    CAS  PubMed  Google Scholar 

  18. Del Rio A (2009) Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. J Sep Sci 32:1566–1584

    PubMed  Google Scholar 

  19. Elbashir AA (2012) Combined approach using capillary electrophoresis and molecular modeling for an understanding of enantioselective recognition mechanisms. J Appl Sol Chem Model 1:121–126

    CAS  Google Scholar 

  20. Sardella R, Ianni F, Macciarulo A et al (2018) Elucidation of the chromatographic enantiomer elution order through computational studies. Mini Rev Med Chem 18:88–97

    CAS  PubMed  Google Scholar 

  21. Chen X, Yamamoto C, Okamoto Y (2007) Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography. Pure Appl Chem 79:1561–1573

    CAS  Google Scholar 

  22. Ikai T, Okamoto Y (2009) Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev 109:6077–6101

    CAS  PubMed  Google Scholar 

  23. Shen J, Okamoto Y (2016) Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev 116:1094–1138

    CAS  PubMed  Google Scholar 

  24. Okamoto Y, Ikai T (2008) Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev 37:2593–2608

    CAS  PubMed  Google Scholar 

  25. Chankvetadze B (2012) Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J Chromatogr A 1269:26–51

    CAS  PubMed  Google Scholar 

  26. Yamamoto C, Yashima E, Okamoto Y (2002) Structural analysis of amylose tris(3,5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC. J Am Chem Soc 124:12583–12589

    CAS  PubMed  Google Scholar 

  27. Ma S, Shen S, Lee H et al (2009) Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism. Reversal of elution order of N-substituted alpha-methyl phenylalanine esters. J Chromatogr A 1216:3784–3793

    CAS  PubMed  Google Scholar 

  28. Kim BH, Lee SU, Moon DC (2012) Chiral recognition of N-phthaloyl, N-tretrachlorophthaloyl, and N-naphthaloyl α-amino acids and their esters on polysaccharide-derived chiral stationary phases. Chirality 24:1037–1046

    CAS  PubMed  Google Scholar 

  29. Peluso P, Mamane V, Aubert E et al (2016) Insights into halogen bond-driven enantioseparations. J Chromatogr A 1467:228–238

    CAS  PubMed  Google Scholar 

  30. Dallocchio R, Dessi A, Solinas M et al (2018) Halogen bond in high-performance liquid chromatography enantioseparations: description, features and modelling. J Chromatogr A 1563:71–81

    CAS  PubMed  Google Scholar 

  31. Wenslow RM, Wang T (2001) Solid-state NMR characterization of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary-phase structure as a function of mobile-phase composition. Anal Chem 73:4190–4195

    CAS  PubMed  Google Scholar 

  32. Wang T, Wenslow RM (2003) Effects of alcohol mobile-phase modifiers in the structure and chiral selectivity of amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase. J Chromatogr A 1015:99–110

    CAS  PubMed  Google Scholar 

  33. Kasat RB, Zvinevich Y, Hillhouse HW et al (2006) Direct probing of sorbent-solute interactions for amylose tris(3,5-dimethylphenylcarbamate) using infrared spectroscopy, x-ray diffraction, solid-state NMR, and DFT modeling. J Phys Chem B 110:14114–14122

    CAS  PubMed  Google Scholar 

  34. Zhao B, Oroskar PA, Wang X et al (2017) The composition of the mobile phase affects the dynamic chiral recognition of drug molecules by the chiral stationary phase. Langmuir 33:11246–11256

    CAS  PubMed  Google Scholar 

  35. Layton C, Ma S, Wu L et al (2013) Study of enantioselectivity on an immobilized amylose carbamate stationary phase under subcritical fluid chromatography. J Sep Sci 36:3941–3948

    CAS  PubMed  Google Scholar 

  36. Kasat RB, Wang NHL, Franses EI (2008) Experimental probing and modeling of key sorbent-solute interactions of norephedrine enantiomers with polysaccharide-based chiral stationary phases. J Chromatogr A 1190:110–119

    CAS  PubMed  Google Scholar 

  37. Kasat RB, Franses EI, Wang NHL (2010) Experimental and computational studies of enantioseparation of structurally similar chiral compounds on amylose tris(3,5-dimethylphenylcarbamate). Chirality 22:565–579

    CAS  PubMed  Google Scholar 

  38. Tsui HW, Franses EI, Wang NHL (2014) Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications of the adsorption mechanism. J Chromatogr A 1328:52–65

    CAS  PubMed  Google Scholar 

  39. Ortuso F, Alcaro S, Menta S et al (2014) A chromatographic an computational study on the driving force operating in the exceptionally large enantioseparation of N-thicarbamoyl-3-(4′-biphenyl)-5-phenyl-4,5-dihydro-(1H) pyrazole on a 4-methylbenzoate cellulose-based chiral stationary phase. J Chromatogr A 1324:71–77

    CAS  PubMed  Google Scholar 

  40. Hu G, Huang M, Luo C et al (2016) Interactions between pyrazole derived enantiomers and Chiralcel OJ: prediction of enantiomer absolute configurations and elution order by molecular dynamics simulations. J Mol Graph Model 66:123–132

    CAS  PubMed  Google Scholar 

  41. Tsui HW, Wang NHL, Franses EI (2013) Chiral recognition mechanism of acyloin-containing chiral solutes by amylose tris[(S)-α-methylbenzylcarbamate]. J Phys Chem 117:9203–9216

    CAS  PubMed  Google Scholar 

  42. Ma S, Tsui HW, Spinelli E et al (2014) Insights into chromatographic enantiomeric separation of allenes on cellulose carbamate stationary phase. J Chromatogr A 1362:119–128

    CAS  PubMed  Google Scholar 

  43. Alcaro S, Bolasco A, Cirilli R et al (2014) Computer-aided molecular design of asymmetric pyrazole derivatives with exceptional enantioselective recognition toward the Chiralcel OJ-H stationary phase. J Chem Inf Model 52:649–654

    Google Scholar 

  44. Ali I, Al-Othman ZA, Al-Warthan A et al (2014) Enantiomeric separation and simulation studies on pheniramine, oxybutynin, cetirizine and brinzolamide chiral drugs on amylose-based columns. Chirality 26:136–143

    CAS  PubMed  Google Scholar 

  45. Ali I, Sahoo DR, Al-Othman ZA et al (2015) Validated chiral high performance liquid chromatography separation method and simulation studies of dipeptides on amylose chiral column. J Chromatogr A 1406:201–209

    CAS  PubMed  Google Scholar 

  46. Shedania Z, Kavaka R, Volonerio A et al (2018) Separation of enantiomers of chiral sulfoxides in high-performance liquid chromatography with cellulose-based chiral selectors using methanol and methanol-water mixtures as mobile phases. J Chromatogr A 1557:62–74

    CAS  PubMed  Google Scholar 

  47. Gogaladze K, Chankvetadze L, Tsintsadze M et al (2015) Effect of basic and acidic additives on the separation of some basic drug enantiomers on polysaccharide-based chiral columns with acetonitrile as mobile phase. Chirality 27:228–234

    CAS  PubMed  Google Scholar 

  48. Matarashvili I, Chankvetadze L, Tsintsadze T et al (2015) HPLC separation of enantiomers of some chiral carboxylic acid derivatives using polysaccharide-based chiral columns and polar organic mobile phases. Chromatographia 78:473–479

    CAS  Google Scholar 

  49. Mosiashvili L, Chankvetadze L, Farkas T, Chankvetadze B (2013) On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases. J Chromatogr A 1317:167–174

    CAS  PubMed  Google Scholar 

  50. Matarashvili I, Ghughunishvili D, Chankvetadze L et al (2017) Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous-organic mobile phases in high-performance liquid chromatography: typical reversed-phase behavior? J Chromatogr A 1483:86–92

    CAS  PubMed  Google Scholar 

  51. Mskhiladze A, Karchkhadze M, Dadianidz A et al (2013) Enantioseparation of chiral antimycotic drugs by HPLC with polysaccharide-based chiral columns and polar organic mobile phases with emphasis on enantiomer elution order. Chromatographia 76:1449–1458

    CAS  Google Scholar 

  52. Beridze N, Tsutskiridze E, Takaishvili N et al (2018) Comparative enantiomer-resolving ability of coated and covalently immobilized versions of two polysaccharide-base chiral selectors in high-performance liquid chromatography. Chromatographia 81:611–621

    CAS  Google Scholar 

  53. Yashima E, Ida H, Okamoto Y (2013) Enantiomeric differentiation by synthetic helical polymers. Top Curr Chem 340:41–72

    CAS  PubMed  Google Scholar 

  54. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617

    CAS  PubMed  Google Scholar 

  55. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1917

    CAS  PubMed  Google Scholar 

  56. Bilensoy E (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. In: Current and future industrial applications. John Wiley & Sons, Hoboken

    Google Scholar 

  57. Dodziuk H (2006) Cyclodextrins and their complexes: chemistry, analytical methods, applications. Wiley-VCH, Weinheim

    Google Scholar 

  58. Crini C (2014) A history of cyclodextrins. Chem Rev 114:10940–10975

    CAS  PubMed  Google Scholar 

  59. Zhang X, Zhang Y, Armstrong DW (2012) Chromatographic separations and analysis: cyclodextrin-mediated HPLC, GC and CE enantiomeric separations. In: Carreira EM, Yamamoto H (eds) Comprehensive chirality, vol 8. Elsevier, Amsterdam, pp 177–199

    Google Scholar 

  60. Schurig V (2010) Use of derivatized cyclodextrins as chiral selectors for the separation of enantiomers by gas chromatography. Ann Pharm Franc 68:82–98

    CAS  PubMed  Google Scholar 

  61. Xiao Y, Ng SC, Tan TT, Wang Y (2012) Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J Chromatogr A 1269:52–68

    CAS  PubMed  Google Scholar 

  62. Rezanka P, Navratilova K, Rezanka M et al (2014) Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 35:2701–2721

    CAS  PubMed  Google Scholar 

  63. Escuder-Gilabert L, Martin-Biosca Y, Medina-Hernandez MJ, Sagrado S (2014) Cyclodextrins in capillary electrophoresis: recent developments and new trends. J Chromatogr A 1357:2–23

    CAS  PubMed  Google Scholar 

  64. Saz JM, Marina ML (2016) Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis. J Chromatogr A 1467:79–94

    CAS  PubMed  Google Scholar 

  65. Zhu Q, Scriba GKE (2016) Advances in the use of cyclodextrins as chiral selectors in capillary electrokinetic chromatography: fundamentals and applications. Chromatographia 79:1403–1435

    CAS  Google Scholar 

  66. Dodziuk H, Kozinsky W, Ejchart A (2004) NMR studies of chiral recognition by cyclodextrins. Chirality 16:90–105

    CAS  PubMed  Google Scholar 

  67. Chankvetadze B (2004) Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. Chem Soc Rev 33:337–347

    CAS  PubMed  Google Scholar 

  68. Mura P (2014) Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal 101:238–250

    CAS  PubMed  Google Scholar 

  69. Mura P (2015) Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J Pharm Biomed Anal 113:226–238

    CAS  PubMed  Google Scholar 

  70. Hazai E, Hazai I, Demko L et al (2010) Cyclodextrin knowledgebase a web-based service managing CD-ligand complexation data. J Comput Aided Mol Des 24:713–717

    CAS  PubMed  Google Scholar 

  71. Salgado A, Tatunashvili E, Gologashvili A et al (2017) Structural rationale for the chiral separation and migration order reversal of clenpenterol enantiomers in capillary electrophoresis using two different β-cyclodextrins. Phys Chem Chem Phys 19:27935–27939

    CAS  PubMed  Google Scholar 

  72. Gogolashvili A, Tatunashvili E, Chankvetadze L et al (2017) Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy. Electrophoresis 38:1851–1859

    CAS  PubMed  Google Scholar 

  73. Fonseca MC, Santos da Silva RC, Soares Nascimento C Jr, Bastos Borges K (2017) Computational contribution to the electrophoretic enantiomer separation mechanism and migration order using modified β-cyclodextrins. Electrophoresis 38:1860–1868

    Google Scholar 

  74. Recio R, Elhalem E, Benito JM et al (2018) NMR study on the stabilization and chiral discrimination of sulforaphane enantiomers and analogues by cyclodextrins. Carbohyd Polym 187:118–125

    CAS  Google Scholar 

  75. Cucinotta V, Messina M, Contino A et al (2017) Chiral separation of terbutaline and non-steroidal anti-inflammatory drugs by using a new lysine-bridged hemispherodextrin in capillary electrophoresis. J Pharm Biomed Anal 145:734–741

    CAS  PubMed  Google Scholar 

  76. Szabo ZI, Szöcs L, Horvath P et al (2016) Liquid chromatography with mass spectrometry enantioseparation of pomalidomide on cyclodextrin-bonded chiral stationary phases and the elucidation of the chiral recognition mechanisms by NMR spectroscopy and molecular modeling. J Sep Sci 39:2941–2949

    CAS  PubMed  Google Scholar 

  77. Szabo ZI, Mohammadhassan F, Szöcs L et al (2016) Stereoselective interactions and liquid chromatographic enantioseparation of thalidomide on cyclodextrin-bonded stationary phases. J Incl Phenom Macrocycl Chem 85:227–236

    CAS  Google Scholar 

  78. Szabo ZI, Toth G, Völgyi G et al (2016) Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling. J Pharm Biomed Anal 117:398–404

    CAS  PubMed  Google Scholar 

  79. Yao Y, Song P, Wen X et al (2017) Chiral separation of 12 pairs of enantiomers by capillary electrophoresis using heptakis-(2,3-diacetyl-6-sulfato)-β-cyclodextrin as the chiral selector and the elucidation of the chiral recognition mechanism by computational methods. J Sep Sci 40:2999–3007

    CAS  PubMed  Google Scholar 

  80. Fejös I, Varga E, Benkovics G et al (2016) Comparative evaluation of the chiral recognition potential of single isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis. J Chromatogr A 1467:454–462

    PubMed  Google Scholar 

  81. Krait S, Salgado A, Chankvetadze B et al (2018) Investigation of the complexation between cyclodextrins and medetomidine enantiomers by capillary electrophoresis, NMR spectroscopy and molecular modeling. J Chromatogr A 1567:198–210

    CAS  PubMed  Google Scholar 

  82. Li X, Yao X, Xiao Y, Wang Y (2017) Enantioseparation of single layer native cyclodextrin chiral stationary phases: effect of cyclodextrin orientation and a modeling study. Anal Chim Acta 990:174–184

    CAS  PubMed  Google Scholar 

  83. Chankvetadze B, Burjanadze N, Maynard DM et al (2002) Comparative enantioseparations with native β-cyclodextrin and heptakis-(2-O-methyl-3,6-di-O-sulfo)-β-cyclodextrin in capillary electrophoresis. Electrophoresis 23:3027–3034

    CAS  PubMed  Google Scholar 

  84. Servais AC, Rousseau A, Fillet M et al (2010) Separation of propranolol enantiomers by CE using sulfated β-CD derivatives in aqueous and non-aqueous electrolytes: comparative CE and NMR study. Electrophoresis 31:1467–1474

    CAS  PubMed  Google Scholar 

  85. Servais AC, Rousseau A, Dive G et al (2012) Combination of capillary electrophoresis, molecular modeling and nuclear magnetic resonance to study the interaction mechanism between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in methanolic background electrolyte. J Chromatogr A 1232:59–64

    CAS  PubMed  Google Scholar 

  86. Chankvetadze L, Servais AC, Fillet M et al (2012) Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy. J Chromatogr A 1267:206–216

    CAS  PubMed  Google Scholar 

  87. Lomsadze K, Salgado A, Calvo E et al (2011) Comparative NMR and MS studies on the mechanism of enantioseparation of propranolol with heptakis(2,3-diacetyl-6-sulfo)-β-cyclodextrin in capillary electrophoresis with aqueous and non-aqueous electrolytes. Electrophoresis 32:1156–1163

    CAS  PubMed  Google Scholar 

  88. Riesova M, Svobodova J, Tosner Z et al (2013) Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties. Anal Chem 85:8518–8525

    CAS  PubMed  Google Scholar 

  89. Beni M, Riesova M, Svobodova J et al (2013) Complexation of buffer constituents with neutral complexation agents: part II. Practical impact in capillary zone electrophoresis. Anal Chem 85:8526–8534

    Google Scholar 

  90. Melani F, Giannini I, Pasquini B et al (2011) Evaluation of the separation mechanism of electrokinetic chromatography with a microemulsion and cyclodextrins using NMR and molecular modeling. Electrophoresis 32:3062–3069

    CAS  PubMed  Google Scholar 

  91. Pasquini B, Melani F, Caprini C et al (2017) Combined approach using capillary electrophoresis, NMR and molecular modeling for ambrisentan related substances analysis: investigation of intermolecular affinities, complexation and separation mechanism. J Pharm Biomed Anal 144:220–229

    CAS  PubMed  Google Scholar 

  92. Vargas C, Schönbeck C, Heimann I, Keller S (2018) Extracavity effect in cyclodextrin/surfactant complexation. Langmuir 34:5781–5787

    CAS  PubMed  Google Scholar 

  93. Alvira E (2013) Molecular dynamics study of the influence of solvents on the chiral discrimination of alanine enantiomers by β-cyclodextrin. Tetrahedron Asymmetry 24:1198–1206

    CAS  Google Scholar 

  94. Alvira E (2015) Theoretical study of the separation of valine enantiomers by β-cyclodextrin with different solvents: a molecular mechanics and dynamics simulation. Tetrahedron Asymmetry 26:853–860

    CAS  Google Scholar 

  95. Alvira E (2017) Influence of solvent polarity on the separation of leucine enantiomers by β-cyclodextrin: a molecular mechanics and dynamics simulation. Tetrahedron Asymmetry 28:1414–1422

    CAS  Google Scholar 

  96. Soares Nascimento C Jr, Fedoce Lopes J, Guimaraes L, Bastos Borges K (2014) Molecular modeling study of the recognition mechanism and enantioseparation of 4-hydroxypropranolol by capillary electrophoresis using carboxymethyl-β-cyclodextrin as the chiral selector. Analyst 139:3901–3910

    Google Scholar 

  97. Zhang Y, Breitbach ZS, Wang C, Armstrong DW (2010) The use of cyclofructans as novel chiral selectors for gas chromatography. Analyst 135:1076–1083

    CAS  PubMed  Google Scholar 

  98. Sun P, Wang C, Breitbach ZS et al (2009) Development of new HPLC chiral stationary phases based on native and derivatized cyclofructans. Anal Chem 81:10215–10226

    CAS  PubMed  Google Scholar 

  99. Jiang C, Tong MY, Breitbach ZS, Armstrong DW (2009) Synthesis and examination of sulfated cyclofructans as a novel class of chiral selectors for CE. Electrophoresis 30:3897–3909

    CAS  PubMed  Google Scholar 

  100. Immel S, Schmitt RG, Lichtenthaler FW (1998) Cyclofructins with six to ten β(1→2)-linked fructofuranose units: geometries, electrostatic profiles, lipophilicity pattern, and potential for inclusion complexation. Carbohydr Res 313:91–105

    CAS  PubMed  Google Scholar 

  101. Wang L, Li Y, Yao L et al (2014) Evaluation and determination of the cyclofructans-amino acid complex binding pattern by electrospray ionization mass spectrometry. J Mass Spectrom 49:1043–1049

    CAS  PubMed  Google Scholar 

  102. Wang L, Li C, Yin Q et al (2015) Construction the switch binding pattern of cyclofructans 6. Tetrahedron 71:3447–3452

    CAS  Google Scholar 

  103. Smuts JP, Hao XQ, Han Z et al (2014) Enantiomeric separations of chiral sulfonic and phosphoric acids with barium-doped cyclofructan selectors via an ion interaction mechanism. Anal Chem 86:1282–1290

    CAS  PubMed  Google Scholar 

  104. Hellinghausen G, Roy D, Lee JT et al (2018) Effective methodologies for enantiomeric separations of 150 pharmacology and toxicology related 1°, 2°, and 3° amines with core-shell chiral stationary phases. J Pharm Biomed Anal 155:70–81

    CAS  PubMed  Google Scholar 

  105. Dominguez-Vega E, Montealegre C, Marina ML (2016) Analysis of antibiotics by CE and their use as chiral selectors: an update. Electrophoresis 37:189–211

    CAS  PubMed  Google Scholar 

  106. Genar M, Castro-Puyana M, Garcia MA, Marina ML (2018) Analysis of antibiotics by CE and CEC and their use as chiral selectors: an update. Electrophoresis 39:235–259

    Google Scholar 

  107. Ilisz I, Pataj Z, Aranyi A, Peter A (2012) Macrocyclic antibiotic selectors in direct HPLC enantioseparations. Sep Purif Rev 41:207–249

    CAS  Google Scholar 

  108. Berthod A (2009) Chiral recognition mechanisms with macrocyclic glycopeptide selectors. Chirality 21:167–175

    CAS  PubMed  Google Scholar 

  109. Fernandes C, Tiritn ME, Cass Q et al (2012) Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases. J Chromatogr A 1241:60–68

    CAS  PubMed  Google Scholar 

  110. Ravichandran S, Collins JR, Singh N, Wainer IW (2012) A molecular model of the enantioselective liquid chromatographic separation of (RS)-ifosfamide and its N-dechloroethylated metabolites on a teicoplanin aglycone chiral stationary phase. J Chromatogr A 1269:218–225

    CAS  PubMed  PubMed Central  Google Scholar 

  111. He X, Lin R, He H et al (2012) Chiral separation of ketoprofen on a Chirobiotic T column and its chiral recognition mechanisms. Chromatographia 75:1355–1363

    CAS  Google Scholar 

  112. Phyo YZ, Cravl S, Palmeira A et al (2018) Enantiomeric resolution and docking studies of chiral xanthonic derivatives on Chirobiotic columns. Molecules 23:E142. https://doi.org/10.3390/molecules23010142

    PubMed Central  Google Scholar 

  113. Bertucci C, Tedesco D (2018) Human serum albumin as chiral selector in enantioselective high-performance liquid chromatography. Curr Med Chem 24:743–757

    Google Scholar 

  114. Bocain S, Skoczylas M, Biszewski B (2016) Amino acids, peptides, and proteins as chemically bonded stationary phases - a review. J Sep Sci 39:83–92

    Google Scholar 

  115. Haginaka J (2011) Mechanistic aspects of chiral recognition on protein-based stationary phases. In: Grushka E (ed) Advances in chromatography, vol 49. CRC Press, Boca Raton, pp 37–69

    Google Scholar 

  116. Haginaka J (2008) Recent progress in protein-based chiral stationary phases for enantioseparations in liquid chromatography. J Chromatogr B 875:12–19

    CAS  Google Scholar 

  117. Ghuman J, Zunszain PA, Petitpas I et al (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52

    CAS  PubMed  Google Scholar 

  118. Fernandes C, Tiritan ME, Pinto M (2013) Small molecules as chromatographic tools for HPLC enantiomeric resolution: Pirkle-type chiral stationary phase evolution. Chromatographia 76:871–897

    CAS  Google Scholar 

  119. Fernandes C, Phyo YZ, Sulva AS et al (2018) Chiral stationary phases based on small molecules: an update of the last 17 years. Sep Purif Rev 47:89–123

    Google Scholar 

  120. Carraro ML, Palmeira A, Tiritan ME et al (2017) Resolution, determination of enantiomeric purity and chiral recognition mechanism of new xanthone derivatives on (S,S)-Whelk-O1 stationary phase. Chirality 29:247–256

    CAS  PubMed  Google Scholar 

  121. Fernandes C, Palmeira C, Santos A et al (2013) Enantioresolution of chiral derivatives of xanthones on (S,S)-whelk-O1 and l-phenylglycine stationary phases and chiral recognition mechanism by docking approach for (S,S)-Whelk-O1. Chirality 25:89–100

    PubMed  Google Scholar 

  122. Zhao C, Cann NM (2007) The docking of chiral epoxides on the Whelk-O1 stationary phase: a molecular dynamics study. J Chromatogr A 1149:197–218

    CAS  PubMed  Google Scholar 

  123. Zhao C, Cann NM (2008) Molecular dynamics study of chiral recognition for the Whelk-O1 chiral stationary phase. Anal Chem 80:2426–2438

    CAS  PubMed  Google Scholar 

  124. Zhao CF, Dimert S, Cann NM (2009) Rational optimization of the Whelk-O1 chiral stationary phase using molecular dynamics simulations. J Chromatogr A 1216:5968–5978

    CAS  PubMed  Google Scholar 

  125. Koscho ME, Spence PL, Pirkle WH (2005) Chiral recognition in the solid state: crystallographically characterized diastereomeric co-crystals between a synthetic chiral selector (Whelk-O1) and a representative chiral selector. Tetrahedron Asymmetry 16:3147–3153

    CAS  Google Scholar 

  126. Ilisz I, Bajtai A, Lindner W, Peter A (2018) Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J Pharm Biomed Anal 159:127–152

    CAS  PubMed  Google Scholar 

  127. Lämmerhofer M (2014) Liquid chromatographic enantiomer separation with special focus on zwitterionic chiral ion-exchangers. Anal Bioanal Chem 406:6095–6103

    PubMed  Google Scholar 

  128. Lämmerhofer M, Lindner W (2008) Liquid chromatographic enantiomer separation and chiral recognition by Cinchona alkaloid-derived enantioselective separation materials. Adv Chromatogr 46:1–107

    PubMed  Google Scholar 

  129. Hoffmann CV, Lämmerhofer M, Lindner W (2007) Novel strong cation-exchange type chiral stationary phase for the enantiomer separation of chiral amines by high-performance liquid chromatography. J Chromatogr A 1161:242–251

    CAS  PubMed  Google Scholar 

  130. Maier NM, Schefzick S, Lombardo GM et al (2002) Elucidation of the chiral recognition mechanism of Cinchona alkaloid carbamate-type receptors for 3,5-dinitrobenzoyl amino acids. J Am Chem Soc 124:8611–8629

    CAS  PubMed  Google Scholar 

  131. Zhang T, Holder E, Franco P, Lindner W (2014) Zwitterionic chiral stationary phases based on cinchona and chiral sulfonic acids for the direct stereoselective separation of amino acids and other amphoteric compounds. J Sep Sci 37:1237–1247

    CAS  PubMed  Google Scholar 

  132. Pell R, Sic S, Lindner W (2012) Mechanistic investigations of Cinchona alkaloid-based zwitterionic chiral stationary phases. J Chromatogr A 1269:287–296

    CAS  PubMed  Google Scholar 

  133. Ianni F, Sardella R, Carotti A (2016) Quinine-based zwitterionic chiral stationary phase as a complementary tool for peptide analysis: Mobile phase effects on enantio- and stereoselectivity of underivatized oligopeptides. Chirality 28:5–16

    CAS  PubMed  Google Scholar 

  134. Sardella R, Macchiarulo A, Urbinati F et al (2018) Exploring the enantiorecognition mechanism of Cinchona alkaloid-based zwitterionic chiral stationary phases and the basic trans-paroxetine enantiomers. J Sep Sci 41:1199–1207

    CAS  PubMed  Google Scholar 

  135. Ianni F, Pucciarini L, Carotti A et al (2018) Improved chromatographic diastereoresolution of cyclopropyl dafachronic acid derivatives using chiral anion exchangers. J Chromatogr A 1557:20–27

    CAS  PubMed  Google Scholar 

  136. Grecso N, Kohout M, Carotti A et al (2016) Mechanistic considerations of enantiorecognition on novel Cinchona alkaloid-based zwitterionic chiral stationary phases from the aspect of the separation of trans-paroxetine enantiomers as model compounds. J Pharm Biomed Anal 124:164–173

    CAS  PubMed  Google Scholar 

  137. Ianni F, Carotti A, Marinozzi M et al (2015) Diastereo- and enantioseparation of a Nα-Boc amino acid with a zwitterionic quinine-based stationary phase: focus on the stereorecognition mechanism. Anal Chim Acta 885:174–782

    CAS  PubMed  Google Scholar 

  138. Sardella R, Lisanti A, Carotti A et al (2014) Ketoprofen enantioseparation with a Cinchona alkaloid based stationary phase: Enantiorecognition mechanism and release studies. J Sep Sci 37:2696–2703

    CAS  PubMed  Google Scholar 

  139. Schmid MG, Gübitz G (2011) Enantioseparation by chromatographic and electromigration techniques using ligand-exchange as chiral separation principle. Anal Bioanal Chem 400:2305–2316

    CAS  PubMed  Google Scholar 

  140. Zhang H, Qi L, Mao L, Chen Y (2012) Chiral separation using capillary electromigration techniques based on ligand exchange principle. J Sep Sci 35:1236–1248

    CAS  PubMed  Google Scholar 

  141. Hyun MH (2018) Liquid chromatographic ligand-exchange chiral stationary phases based on amino alcohols. J Chromatogr A 1557:28–42

    CAS  PubMed  Google Scholar 

  142. Natalini B, Giacche N, Sardella R et al (2010) Computational studies for the elucidation of the enantiomer elution order of amino acids in chiral ligand-exchange chromatography. J Chromatogr A 1217:7523–7527

    CAS  PubMed  Google Scholar 

  143. Mofaddel N, Adoubel AA, Morin CJ et al (2010) Molecular modelling of complexes between two amino acids and copper(II): correlation with ligand-exchange capillary electrophoresis. J Mol Struct 975:220–226

    CAS  Google Scholar 

  144. Echevarría RN, Franca CA, Tascon M et al (2016) Chiral ligand-exchange chromatography with Cinchona alkaloids. Exploring experimental conditions for enantioseparation of α-amino acids. Microchem J 129:104–110

    Google Scholar 

  145. Kapnissi-Christodoulou CP, Stavrou IJ, Mavroudi MC (2014) Chiral ionic liquids in chromatographic and electrophoretic separations. J Chromatogr A 1363:2–10

    CAS  PubMed  Google Scholar 

  146. He S, He Y, Cheng L et al (2018) Novel chiral ionic liquids stationary phases for the enantiomer separation of chiral acid by high-performance liquid chromatography. Chirality 30:670–679

    CAS  PubMed  Google Scholar 

  147. Zhang Q (2018) Ionic liquids in capillary electrophoresis enantioseparations. Trends Anal Chem 100:145–154

    CAS  Google Scholar 

  148. Bang E, Jung JW, Lee W et al (2001) Chiral recognition of (18-crown-6)-tetracarboxylic acid as a chiral selector determined by NMR spectroscopy. J Chem Soc Perkin Trans 2:1685–1692

    Google Scholar 

  149. Lee W, Bang E, Baek CS, Lee W (2004) Chiral discrimination studies of (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid by high-performance liquid chromatography and NMR spectroscopy. Magn Res Chem 42:389–395

    CAS  Google Scholar 

  150. Nagata H, Nishi H, Kamagauchi M, Ishica T (2008) Guest-dependent conformation of 18-crown-6 tetracarboxylic acid: relation to chiral separation of racemic amino acids. Chirality 20:820–827

    CAS  PubMed  Google Scholar 

  151. Nagata H, Machida Y, Nishi H et al (2009) Structural requirement for chiral recognition of amino acid by (18-crown-6)-tetracarboxylic acid: binding analysis in solution and solid states. Bull Chem Soc Jpn 82:219–229

    CAS  Google Scholar 

  152. Tóth T, Németh T, Leveles I et al (2017) Structural characterization of the crystalline diastereomeric complex of enantiopure dimethylacridino-18-crown-6 ether and the enantiomers of 1-(1-napthyl)ethylamine hydrogen perchlorate. Struct Chem 28:289–296

    Google Scholar 

  153. Lovely A, Wenzel TJ (2008) Chiral NMR discrimination of amines: analysis of secondary, tertiary, and prochiral amines using (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Chirality 20:370–378

    CAS  PubMed  Google Scholar 

  154. Hyun MH (2015) Development of HPLC chiral stationary phases based in (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid and their applications. Chirality 27:576–588

    CAS  PubMed  Google Scholar 

  155. Hyun MH (2016) Liquid chromatographic enantioseparations on crown ether-based chiral stationary phases. J Chromatogr A 1467:19–32

    CAS  PubMed  Google Scholar 

  156. Adhikari S, Lee W (2018) Chiral separation using chiral crown ethers as chiral selectors. J Pharm Invest 48:225–231

    CAS  Google Scholar 

  157. Elbashir AA, Aboul-Enein HY (2010) Application of crown ethers as buffer additives in capillary electrophoresis. Curr Pharm Anal 6:101–113

    CAS  Google Scholar 

  158. Yashima E, Maeda K, Idea H et al (2009) Helical polymers: synthesis, structures and functions. Chem Rev 109:6102–6211

    CAS  PubMed  Google Scholar 

  159. Yashima E, Maeda K (2008) Chirality-responsive helical polymers. Macromolecules 41:3–12

    CAS  Google Scholar 

  160. Cui Y, Li B, He H et al (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493

    CAS  PubMed  Google Scholar 

  161. Xue M, Li B, Qiu S, Chen B (2016) Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations. Mater Today 19:503–515

    CAS  Google Scholar 

  162. Duerinck T, Denayer JFM (2015) Metal-organic frameworks as stationary phases for chiral chromatographic and membrane separations. Chem Eng Sci 124:179–187

    CAS  Google Scholar 

  163. Peluso P, Mamane V, Cossu S (2014) Homochiral metal-organic frameworks and their application in chromatography enantioseparations. J Chromatogr A 1363:11–16

    CAS  PubMed  Google Scholar 

  164. Bhattacharjee S, Khan MI, Li X et al (2018) Recent progress in asymmetric catalysis and chromatographic separation by chiral metal-organic frameworks. Catalysts 8:120. https://doi.org/10.3390/catal8030120

    Article  CAS  Google Scholar 

  165. Li X, Chang V, Wang X et al (2014) Applications of homochiral metal-organic frameworks in the enantioselective adsorption and chromatography separation. Electrophoresis 35:2733–2743

    CAS  PubMed  Google Scholar 

  166. Xie SM, Zhang M, Fei ZX, Yuan LM (2014) Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography. J Chromatogr A 1363:137–143

    CAS  PubMed  Google Scholar 

  167. Xie SM, Yuan LM (2017) Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography. J Sep Sci 40:124–127

    CAS  PubMed  Google Scholar 

  168. Peng Y, Gong T, Zhang K et al (2014) Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation. Nat Commun 5:4406. https://doi.org/10.1038/ncomms5406

    Article  CAS  PubMed  Google Scholar 

  169. Rong F, Li P (2012) Study of the weakest interaction model for chiral resolution using molecularly imprinted polymer. Adv Mater Res 391-392:111–115

    CAS  Google Scholar 

  170. Cheong WJ, Ali F, Choi JH et al (2013) Recent applications of molecular imprinted polymers for enantioselective recognition. Talanta 106:45–59

    CAS  PubMed  Google Scholar 

  171. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628

    CAS  PubMed  Google Scholar 

  172. Greno M, Marina ML, Castro-Puyana M (2018) Enantioseparation by capillary electrophoresis using ionic liquids as chiral selectors. Crit Rev Anal Chem 48:429–446

    CAS  PubMed  Google Scholar 

  173. Ding J, Armstrong DW (2005) Chiral ionic liquids. Synthesis and applications. Chirality 17:281–292

    CAS  PubMed  Google Scholar 

  174. Wang J, Warner IM (1994) Chiral separations using micellar electrokinetic capillary chromatography and a polymerized chiral micelle. Anal Chem 66:3773–3776

    CAS  Google Scholar 

  175. Dobashi A, Hamada M, Dobashi Y, Yamaguchi J (1995) Enantiomeric separation with sodium dodecanoyl-l-amino acidate micelles and poly(sodium(10-undecanoyl)-l-valinate) by electrokinetic chromatography. Anal Chem 67:3011–3017

    CAS  Google Scholar 

  176. Morris KF, Billiot EJ, Billiot FH et al (2012) Investigation of chiral molecular micelles by NMR spectroscopy and molecular dynamic simulation. Open J Phys Chem 2:240–251

    PubMed  PubMed Central  Google Scholar 

  177. Morris KF, Billiot EJ, Billiot FH et al (2013) A molecular dynamics simulation study of two dipeptide based molecular micelles: effect of amino acid order. Open J Phys Chem 3:20–29

    PubMed  PubMed Central  Google Scholar 

  178. Morris KF, Billiot EJ, Billiot FH et al (2014) A molecular dynamics simulation study of the association of 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate enantiomers with a chiral molecular micelle. Chem Phys 439:36–43

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Morris KF, Billiot EJ, Billiot FH et al (2015) Molecular dynamics simulation and NMR investigation of the association of the β-blockers atenolol and propranolol with a chiral molecular micelle. Chem Phys 457:133–146

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Morris KF, Billiot EJ, Billiot FH et al (2018) Investigation of chiral recognition by molecular micelles with molecular dynamics simulations. J Disper Sci Technol 39:45–54

    CAS  Google Scholar 

  181. Yaghoubnejad S, Tabar Heydar K, Ahmadi SH, Zadmard R (2018) Preparation and evaluation of a chiral HPLC stationary phase based on cone calix[4]arene functionalized at the upper rim with l-alanine. Biomed Chromatogr 32:e4122

    Google Scholar 

  182. Chelvi SKT, Zhao J, Chen L et al (2014) Preparation and characterization of 4-isopropylcalix[4]arene-capped (3-(2-O-β-cyclodextrin)-2-hydroxypropoxy)-propylsilyl-appended silica particles as chiral stationary phase for high-performance liquid chromatography. J Chromatogr A 1324:104–108

    CAS  PubMed  Google Scholar 

  183. Chelvi SKT, Yong EL, Gong Y (2008) Preparation and evaluation of calyx[4]arene-capped β-cyclodextrin-bonded silica particles as chiral stationary phase for high-performance liquid chromatography. J Chromatogr A 1203:54–58

    Google Scholar 

  184. Krawinkler KH, Maier NM, Sajovic E, Lindner W (2004) Novel urea-linked cinchona-calixarene hybrid-type receptors for efficient chromatographic enantiomer separation of carbamate-protected cyclic amino acids. J Chromatogr A 1053:119–131

    CAS  PubMed  Google Scholar 

  185. Sanchez Pena M, Zhang Y, Warner IM (1997) Enantiomeric separations by use of calixarene electrokinetic chromatography. Anal Chem 69:3239–3242

    Google Scholar 

  186. Grady T, Joyce T, Smyth MR et al (1998) Chiral resolution of the enantiomers of phenylglycinol using (S)-di-naphthylprolinol calyx[4]arene by capillary electrophoresis and fluorescence spectroscopy. Anal Commun 35:123–125

    CAS  Google Scholar 

  187. Zhang JH, Xie SM, Wang BJ et al (2018) A homochiral porous organic cage with large cavity and pore window for the efficient gas chromatography separation of enantiomers and positional isomers. J Sep Sci 41:1385–1394

    CAS  PubMed  Google Scholar 

  188. Zhang JH, Xie SM, Wang BJ et al (2015) Highly selective separation of enantiomers using a chiral porous organic cage. J Chromatogr A 1426:174–182

    CAS  PubMed  Google Scholar 

  189. Xie SM, Zhang JH, Fu N et al (2016) A chiral porous organic cage for molecular recognition using gas chromatography. Anal Chim Acta 903:156–163

    CAS  PubMed  Google Scholar 

  190. Chen LJ, Riss PS, Chong SY et al (2014) Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat Mater 13:954–960

    CAS  PubMed  Google Scholar 

  191. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  PubMed  Google Scholar 

  192. Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852

    CAS  PubMed  Google Scholar 

  193. Peyrin E (2009) Nucleic acid aptamer molecular recognition principles and application in liquid chromatography and capillary electrophoresis. J Sep Sci 32:1531–1536

    CAS  PubMed  Google Scholar 

  194. Ravelet C, Peyrin E (2006) Recent developments in the HPLC enantiomeric separation using chiral selectors identified by a combinatorial strategy. J Sep Sci 29:1322–1331

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard K. E. Scriba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Scriba, G.K.E. (2019). Recognition Mechanisms of Chiral Selectors: An Overview. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_1

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics