Skip to main content

Experimental Approaches to Investigate the Role of Helicase Acetylation in Regulating R-Loop Stability

  • Protocol
  • First Online:
Protein Acetylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1983))

Abstract

R-loops are three-stranded nucleic acid structures composed of a DNA-RNA heteroduplex and a displaced single-stranded DNA. Although R-loops serve important roles in transcription and chromatin structure, they are also a major threat to genome stability. Cells prevent accumulation of genomic R-loops by mechanisms that remove these structures, such as ribonucleases which digest DNA-RNA hybrids and helicases which unwind R-loops. Here we describe methods to monitor resolvement of R-loops by the helicase DDX21 focussing on the impact of acetylation on helicase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA et al (2016) Prevalent, dynamic, and conserved R-Loop structures associate with specific epigenomic signatures in mammals. Mol Cell 63(1):167–178

    Article  CAS  Google Scholar 

  2. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16(10):583–597

    Article  CAS  Google Scholar 

  3. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396

    Article  CAS  Google Scholar 

  4. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276(6):1494–1505

    Article  CAS  Google Scholar 

  5. Tran PLT, Pohl TJ, Chen CF, Chan A, Pott S, Zakian VA (2017) PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. Nat Commun 8:15025

    Article  Google Scholar 

  6. Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K et al (2015) BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 57(4):636–647

    Article  CAS  Google Scholar 

  7. Chakraborty P, Grosse F (2011) Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10(6):654–665

    Article  CAS  Google Scholar 

  8. Song C, Hotz-Wagenblatt A, Voit R, Grummt I (2017) SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev 31:1370–1381

    Article  CAS  Google Scholar 

  9. Sridhara SC, Carvalho S, Grosso AR, Gallego-Paez LM, Carmo-Fonseca M, de Almeida SF (2017) Transcription dynamics prevent RNA-mediated genomic instability through SRPK2-dependent DDX23 phosphorylation. Cell Rep 18(2):334–343

    Article  CAS  Google Scholar 

  10. Popuri V, Bachrati CZ, Muzzolini L, Mosedale G, Costantini S, Giacomini E et al (2008) The human RecQ helicases, BLM and RECQ1, display distinct DNA substrate specificities. J Biol Chem 283(26):17766–17776

    Article  CAS  Google Scholar 

  11. Wang X, Li J, Diaz J, You J (2014) Helicase assays. Bio-protocol 4(6):e1079

    Article  Google Scholar 

  12. Kim JH, Seo YS (2009) In vitro assays for studying helicase activities. Methods Mol Biol 521:361–379

    Article  CAS  Google Scholar 

  13. Valdez BC, Henning D, Perumal K, Busch H (1997) RNA-unwinding and RNA-folding activities of RNA helicase II/Gu—two activities in separate domains of the same protein. Eur J Biochem 250(3):800–807

    Article  CAS  Google Scholar 

  14. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7(8):2745–2752

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Work in the Grummt lab is supported by the Deutsche Forschungsgemeinschaft (GR475/22-2 and SFB1036), CellNetworks (EcTop Survey 2014), and the Baden-Württemberg Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Grummt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, C., Grummt, I. (2019). Experimental Approaches to Investigate the Role of Helicase Acetylation in Regulating R-Loop Stability. In: Brosh, Jr., R. (eds) Protein Acetylation. Methods in Molecular Biology, vol 1983. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9434-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9434-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9433-5

  • Online ISBN: 978-1-4939-9434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics