Skip to main content

Examining the Role of HDACs in DNA Double-Strand Break Repair in Neurons

  • Protocol
  • First Online:
Protein Acetylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1983))

Abstract

Histone deacetylases (HDACs) modulate chromatin structure by removing acetyl groups from histones. Upon DNA double-strand breaks (DSBs), deacetylation of H3K56 and H4K16 by HDACs occurs immediately at break sites, and is crucial for DSB repair. Here we describe two assays that examine defective DSB repair caused by HDAC inhibition in primary cortical neurons: single-cell gel electrophoresis to assay DNA integrity (the comet assay) and western blot analysis for γH2AX, a phosphorylated histone variant associated with DSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cerna D, Camphausen K, Tofilon PJ (2006) Histone deacetylation as a target for radiosensitization. Curr Top Dev Biol 73:173–204. https://doi.org/10.1016/S0070-2153(05)73006-4

    Article  CAS  PubMed  Google Scholar 

  2. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, Jackson SP (2010) Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 17(9):1144–1151. https://doi.org/10.1038/nsmb.1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dobbin MM, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao PC, Qiu Y, Zhao Y, Tsai LH (2013) SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci 16(8):1008–1015. https://doi.org/10.1038/nn.3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, Mackenzie IR, Huang EJ, Tsai LH (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci 16(10):1383–1391. https://doi.org/10.1038/nn.3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim D, Frank CL, Dobbin MM, Tsunemoto RK, Tu W, Peng PL, Guan JS, Lee BH, Moy LY, Giusti P, Broodie N, Mazitschek R, Delalle I, Haggarty SJ, Neve RL, Lu Y, Tsai LH (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60(5):803–817. https://doi.org/10.1016/j.neuron.2008.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thurn KT, Thomas S, Raha P, Qureshi I, Munster PN (2013) Histone deacetylase regulation of ATM-mediated DNA damage signaling. Mol Cancer Ther 12(10):2078–2087. https://doi.org/10.1158/1535-7163.MCT-12-1242

    Article  CAS  PubMed  Google Scholar 

  7. Fairbairn DW, Olive PL, O'Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339(1):37–59

    Article  CAS  Google Scholar 

  8. Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1(1):23–29. https://doi.org/10.1038/nprot.2006.5

    Article  CAS  PubMed  Google Scholar 

  9. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467. https://doi.org/10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  10. Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement MV (2014) OpenComet: an automated tool for comet assay image analysis. Redox Biol 2:457–465. https://doi.org/10.1016/j.redox.2013.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sciarretta C, Minichiello L (2010) The preparation of primary cortical neuron cultures and a practical application using immunofluorescent cytochemistry. Methods Mol Biol 633:221–231. https://doi.org/10.1007/978-1-59745-019-5_16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIA grant (AG046174), NINDS grant (NS102730), and Glenn award for research in biological mechanism of aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Huei Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pao, PC., Penney, J., Tsai, LH. (2019). Examining the Role of HDACs in DNA Double-Strand Break Repair in Neurons. In: Brosh, Jr., R. (eds) Protein Acetylation. Methods in Molecular Biology, vol 1983. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9434-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9434-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9433-5

  • Online ISBN: 978-1-4939-9434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics