Skip to main content

Proteomic Methods to Evaluate NOX-Mediated Redox Signaling

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

The NADPH oxidase (NOX) family of proteins is involved in regulating many diverse cellular processes, which is largely mediated by NOX-mediated reversible oxidation of target proteins in a process known as redox signaling. Protein cysteine residues are the most prominent targets in redox signaling, and to understand the mechanisms by which NOX affect cellular pathways, specific methodology is required to detect specific oxidative cysteine modifications and to identify targeted proteins. Among the many potential redox modifications involving cysteine residues, reversible modifications most relevant to NOX are sulfenylation (P-SOH) and S-glutathionylation (P-SSG), as both can induce structural or functional alterations. Various experimental approaches have been developed to detect these specific modifications, and this chapter will detail state-of-the-art methodology to selectively evaluate these modifications in specific target proteins in relation to NOX activation. We also discuss some of the limitations of these procedures and potential complementary approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  Google Scholar 

  2. Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5(1):47–62

    Article  CAS  Google Scholar 

  3. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421

    Article  CAS  Google Scholar 

  4. Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31:53

    Article  CAS  Google Scholar 

  5. Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157

    Article  CAS  Google Scholar 

  6. Stocker S, Van Laer K, Mijuskovic A, Dick TP (2018) The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid Redox Signal 28(7):558–573

    Article  Google Scholar 

  7. Meng T-C, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9(2):387–399

    Article  CAS  Google Scholar 

  8. Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121(5):667–670

    Article  CAS  Google Scholar 

  9. Salmeen A et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423(6941):769–773

    Article  CAS  Google Scholar 

  10. Barrett WC et al (1999) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38(20):6699–6705

    Article  CAS  Google Scholar 

  11. Paulsen CE et al (2011) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8(1):57–64

    Article  Google Scholar 

  12. Truong TH et al (2016) Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem Biol 23(7):837–848

    Article  CAS  Google Scholar 

  13. Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25(15):6391–6403

    Article  CAS  Google Scholar 

  14. Krasnowska EK et al (2008) N-acetyl-l-cysteine fosters inactivation and transfer to endolysosomes of c-Src. Free Radic Biol Med 45(11):1566–1572

    Article  CAS  Google Scholar 

  15. Heppner DE et al (2016) The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J Biol Chem 291(44):23,282–23,293

    Article  CAS  Google Scholar 

  16. Sham D, Wesley UV, Hristova M, van der Vliet A (2013) ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS One 8(1):e54391

    Article  CAS  Google Scholar 

  17. Hristova M et al (2016) Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses. J Allergy Clin Immunol 137(5):1545–1556. e1511

    Article  CAS  Google Scholar 

  18. Habibovic A et al (2016) DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 1(18):e88811

    Article  Google Scholar 

  19. Gorissen SH et al (2013) Dual oxidase-1 is required for airway epithelial cell migration and bronchiolar reepithelialization after injury. Am J Respir Cell Mol Biol 48(3):337–345

    Article  CAS  Google Scholar 

  20. Reynaert NL et al (2006) Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinase β. Proc Natl Acad Sci 103(35):13,086–13,091

    Article  CAS  Google Scholar 

  21. Anathy V et al (2012) Oxidative processing of latent Fas in the endoplasmic reticulum controls the strength of apoptosis. Mol Cell Biol 32(17):3464–3478

    Article  CAS  Google Scholar 

  22. Hanschmann E-M, Godoy JR, Berndt C, Hudemann C, Lillig CH (2013) Thioredoxins, glutaredoxins, and peroxiredoxins—molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 19(13):1539–1605

    Article  CAS  Google Scholar 

  23. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166

    Article  CAS  Google Scholar 

  24. Wall SB et al (2014) Detection of electrophile-sensitive proteins. Biochim Biophys Acta 1840(2):913–922

    Article  CAS  Google Scholar 

  25. Ida T et al (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111(21):7606–7611

    Article  CAS  Google Scholar 

  26. Akaike T et al (2017) Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun 8(1):1177

    Article  Google Scholar 

  27. Heppner DE et al (2018) Cysteine perthiosulfenic acid (Cys-SSOH): a novel intermediate in thiol-based redox signaling? Redox Biol 14:379–385

    Article  CAS  Google Scholar 

  28. Sethuraman M et al (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3(6):1228–1233

    Article  CAS  Google Scholar 

  29. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1

    CAS  PubMed  Google Scholar 

  30. Aesif SW, Janssen-Heininger YMW, Reynaert NL (2010) Protocols for the detection of S-glutathionylated and S-nitrosylated proteins in situ. Methods Enzymol 474:289–296

    Article  CAS  Google Scholar 

  31. Poole LB (2008) Measurement of protein sulfenic acid content. Curr Protoc Toxicol. 0 17:Unit17.12–Unit17.12. Editorial board, Mahin D. Maines (editor-in-chief) et al.

    Google Scholar 

  32. Maller C, Schroder E, Eaton P (2011) Glyceraldehyde 3-phosphate dehydrogenase is unlikely to mediate hydrogen peroxide signaling: studies with a novel anti-dimedone sulfenic acid antibody. Antioxid Redox Signal 14(1):49–60

    Article  CAS  Google Scholar 

  33. Klomsiri C et al (2010) Use of dimedone-based chemical probes for sulfenic acid detection: evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol 473:77–94

    Article  CAS  Google Scholar 

  34. Yang J et al (2015) Global, in situ, site-specific analysis of protein S-sulfenylation. Nat Protoc 10(7):1022–1037

    Article  CAS  Google Scholar 

  35. Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Biol Med 43(6):883–898

    Article  CAS  Google Scholar 

  36. Markovic J et al (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282(28):20,416–20,424

    Article  CAS  Google Scholar 

  37. Townsend DM et al (2006) A glutathione S-transferase pi-activated prodrug causes kinase activation concurrent with S-glutathionylation of proteins. Mol Pharmacol 69(2):501–508

    Article  CAS  Google Scholar 

  38. Brennan JP et al (2006) The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomics 5(2):215–225

    Article  CAS  Google Scholar 

  39. Lind C et al (2002) Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 406(2):229–240

    Article  CAS  Google Scholar 

  40. Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T (2000) Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry 39(36):11,121–11,128

    Article  CAS  Google Scholar 

  41. Hristova M et al (2014) Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells. Redox Biol 2:436–446

    Article  CAS  Google Scholar 

  42. Nelson KJ et al (2010) Use of dimedone-based chemical probes for sulfenic acid detection: methods to visualize and identify labeled proteins. Methods Enzymol 473:95–115. https://doi.org/10.1016/S0076-6879(10)73004-4

    Article  CAS  PubMed  Google Scholar 

  43. Tsutsumi R et al (2017) Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun 8(1):466

    Article  Google Scholar 

  44. Altenhofer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23(5):406–427

    Article  Google Scholar 

  45. Charles RL et al (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6(9):1473–1484

    Article  CAS  Google Scholar 

  46. Yang J, Gupta V, Carroll KS, Liebler DC (2014) Site-specific mapping and quantification of protein S-sulphenylation in cells. Nat Commun 5:4776

    Article  CAS  Google Scholar 

  47. Checconi P et al (2015) Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress. PLoS One 10(5):e0127086

    Article  Google Scholar 

  48. Seo YH, Carroll KS (2011) Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone. Angew Chem Int Ed 50(6):1342–1345

    Article  CAS  Google Scholar 

  49. Forman HJ et al (2017) Protein cysteine oxidation in redox signaling: caveats on sulfenic acid detection and quantification. Arch Biochem Biophys 617:26–37

    Article  CAS  Google Scholar 

  50. Heppner DE, Janssen-Heininger YMW, van der Vliet A (2017) The role of sulfenic acids in cellular redox signaling: reconciling chemical kinetics and molecular detection strategies. Arch Biochem Biophys 616:40–46

    Article  CAS  Google Scholar 

  51. Gupta V, Carroll KS (2016) Profiling the reactivity of cyclic C-nucleophiles towards electrophilic sulfur in cysteine sulfenic acid. Chem Sci 7(1):400–415. https://doi.org/10.1039/c5sc02569a

    Article  CAS  PubMed  Google Scholar 

  52. Gupta V, Yang J, Liebler DC, Carroll KS (2017) Diverse redoxome reactivity profiles of carbon nucleophiles. J Am Chem Soc 139(15):5588–5595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research support from NHLBI and NIA (grants R01 HL085646, R01 HL138708 and R21 AG055325), as well as Fellowship support from NIH (T32 HL076122 and F31 HL142221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert van der Vliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dustin, C.M., Hristova, M., Schiffers, C., van der Vliet, A. (2019). Proteomic Methods to Evaluate NOX-Mediated Redox Signaling. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics