Skip to main content

Isolation of Redox-Active Endosomes (Redoxosomes) and Assessment of NOX Activity

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Reactive oxygen species (ROS) convey signals essential for proliferation, maintenance, and senescence of a growing list of cell types. Compartmentalization of these signals is integral to cell viability as well as the signaling pathways ROS direct. Redox-active endosomes (redoxosomes) are formed downstream of several ligand-activated receptors. NADPH oxidase (NOX) is a main component of redoxosomes, which recruits multiple proteins (Rac1, NOX2, p67phox, SOD1). Isolation of redoxosomes and evaluation of how superoxide (O2˙) production directs receptor signaling at the level of the endosome have enabled a better understanding of biologic processes controlled by ROS. In this chapter, we will first review the major signaling pathways that utilize redoxosomes and components that control its redox-dependent functions. We will then outline biochemical and biophysical methods for the isolation and characterization of redoxosome properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oakley FD, Abbott D, Li Q, Engelhardt JF (2009) Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 11(6):1313–1333. https://doi.org/10.1089/ARS.2008.2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klomsiri C, Rogers LC, Soito L, McCauley AK, King SB, Nelson KJ, Poole LB, Daniel LW (2014) Endosomal H2O2 production leads to localized cysteine sulfenic acid formation on proteins during lysophosphatidic acid-mediated cell signaling. Free Radic Biol Med 71:49–60. https://doi.org/10.1016/j.freeradbiomed.2014.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Q, Harraz MM, Zhou W, Zhang LN, Ding W, Zhang Y, Eggleston T, Yeaman C, Banfi B, Engelhardt JF (2006) Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol Cell Biol 26(1):140–154. https://doi.org/10.1128/MCB.26.1.140-154.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Q, Spencer NY, Oakley FD, Buettner GR, Engelhardt JF (2009) Endosomal Nox2 facilitates redox-dependent induction of NF-kappaB by TNF-alpha. Antioxid Redox Signal 11(6):1249–1263. https://doi.org/10.1089/ARS.2008.2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oakley FD, Smith RL, Engelhardt JF (2009) Lipid rafts and caveolin-1 coordinate interleukin-1beta (IL-1beta)-dependent activation of NFkappaB by controlling endocytosis of Nox2 and IL-1beta receptor 1 from the plasma membrane. J Biol Chem 284(48):33,255–33,264. https://doi.org/10.1074/jbc.M109.042127

    Article  CAS  Google Scholar 

  6. Miller FJ Jr, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS (2007) Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 101(7):663–671. https://doi.org/10.1161/CIRCRESAHA.107.151076

    Article  CAS  PubMed  Google Scholar 

  7. Li Q, Zhang Y, Marden JJ, Banfi B, Engelhardt JF (2008) Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury. Biochem J 411(3):531–541. https://doi.org/10.1042/BJ20071534

    Article  CAS  PubMed  Google Scholar 

  8. Banfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278(6):3510–3513. https://doi.org/10.1074/jbc.C200613200

    Article  CAS  PubMed  Google Scholar 

  9. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189. https://doi.org/10.1038/nri1312

    Article  CAS  PubMed  Google Scholar 

  10. Mumbengegwi DR, Li Q, Li C, Bear CE, Engelhardt JF (2008) Evidence for a superoxide permeability pathway in endosomal membranes. Mol Cell Biol 28(11):3700–3712. https://doi.org/10.1128/MCB.02038-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lynch RE, Fridovich I (1978) Permeation of the erythrocyte stroma by superoxide radical. J Biol Chem 253(13):4697–4699

    CAS  PubMed  Google Scholar 

  12. Salvador A, Sousa J, Pinto RE (2001) Hydroperoxyl, superoxide and pH gradients in the mitochondrial matrix: a theoretical assessment. Free Radic Biol Med 31(10):1208–1215

    Article  CAS  PubMed  Google Scholar 

  13. Harraz MM, Marden JJ, Zhou W, Zhang Y, Williams A, Sharov VS, Nelson K, Luo M, Paulson H, Schoneich C, Engelhardt JF (2008) SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest 118(2):659–670. https://doi.org/10.1172/JCI34060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizuno T, Kaibuchi K, Ando S, Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y (1992) Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267(15):10,215–10,218

    CAS  Google Scholar 

  15. Kopani M, Celec P, Danisovic L, Michalka P, Biro C (2006) Oxidative stress and electron spin resonance. Clin Chim Acta 364(1-2):61–66. https://doi.org/10.1016/j.cca.2005.05.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R24 DK096518 (to J.F.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Engelhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shahin, W.S., Engelhardt, J.F. (2019). Isolation of Redox-Active Endosomes (Redoxosomes) and Assessment of NOX Activity. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics