Skip to main content

High-Throughput Screening of NOX Inhibitors

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Development of new, selective inhibitors of nicotinamide adenine dinucleotide phosphate oxidase (NOX) isoforms is important both for basic studies on the role of these enzymes in cellular redox signaling, cell physiology, and proliferation and for development of new drugs for diseases carrying a component of increased NOX activity, such as several types of cancer and cardiovascular and neurodegenerative diseases. High-throughput screening (HTS) of large libraries of compounds remains the major approach for development of new NOX inhibitors. Here, we describe the protocol for the HTS campaign for NOX inhibitors using rigorous assays for superoxide radical anion and hydrogen peroxide, based on oxidation of hydropropidine, coumarin boronic acid, and Amplex Red. We propose using these three probes to screen for and identify new inhibitors, by selecting positive hits that show inhibitory effects in all three assays. Protocols for the synthesis of hydropropidine and for confirmatory assays, including oxygen consumption measurements, electron paramagnetic resonance spin trapping of superoxide, and simultaneous monitoring of superoxide and hydrogen peroxide, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  Google Scholar 

  2. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  Google Scholar 

  3. Cifuentes-Pagano E, Meijles DN, Pagano PJ (2014) The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 20:2741–2754

    Article  CAS  Google Scholar 

  4. Bedard K, Whitehouse S, Jaquet V (2015) Challenges, Progresses, and Promises for Developing Future NADPH Oxidase Therapeutics. Antioxid Redox Signal 23:355–357

    Article  CAS  Google Scholar 

  5. Diebold BA, Smith SM, Li Y, Lambeth JD (2015) NOX2 as a target for drug development: indications, possible complications, and progress. Antioxid Redox Signal 23:375–405

    Article  CAS  Google Scholar 

  6. Cifuentes-Pagano E, Csanyi G, Pagano PJ (2012) NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS. Cell Mol Life Sci 69:2315–2325

    Article  CAS  Google Scholar 

  7. Smith SM et al (2012) Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. Chem Biol 19:752–763

    Article  CAS  Google Scholar 

  8. Borbely G et al (2010) Small-molecule inhibitors of NADPH oxidase 4. J Med Chem 53:6758–6762

    Article  CAS  Google Scholar 

  9. Seitz PM et al (2010) Development of a high-throughput cell-based assay for superoxide production in HL-60 cells. J Biomol Screen 15:388–397

    Article  CAS  Google Scholar 

  10. Cifuentes-Pagano E et al (2013) Bridged tetrahydroisoquinolines as selective NADPH oxidase 2 (Nox2) inhibitors. Medchemcomm 4:1085–1092

    Article  CAS  Google Scholar 

  11. Seredenina T et al (2015) A subset of N-substituted phenothiazines inhibits NADPH oxidases. Free Radic Biol Med 86:239–249

    Article  CAS  Google Scholar 

  12. Gianni D et al (2010) A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 5:981–993

    Article  CAS  Google Scholar 

  13. Hirano K et al (2015) Discovery of GSK2795039, a novel small molecule NADPH oxidase 2 inhibitor. Antioxid Redox Signal 23:358–374

    Article  CAS  Google Scholar 

  14. Zielonka J et al (2014) High-throughput assays for superoxide and hydrogen peroxide design of a screening workflow to identify inhibitors of NADPH oxidases. J Biol Chem 289:16176–16189

    Article  CAS  Google Scholar 

  15. Zielonka J et al (2016) Mitigation of NADPH oxidase 2 activity as a strategy to inhibit peroxynitrite formation. J Biol Chem 291:7029–7044

    Article  CAS  Google Scholar 

  16. Maghzal GJ, Krause KH, Stocker R, Jaquet V (2012) Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 53:1903–1918

    Article  CAS  Google Scholar 

  17. Zielonka J et al (2017) Recent developments in the probes and assays for measurement of the activity of NADPH oxidases. Cell Biochem Biophys 75:335–349

    Article  CAS  Google Scholar 

  18. Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

    Article  CAS  Google Scholar 

  19. Li Y et al (2015) Thioxo-dihydroquinazolin-one compounds as novel inhibitors of myeloperoxidase. ACS Med Chem Lett 6:1047–1052

    Article  CAS  Google Scholar 

  20. Michalski R, Zielonka J, Hardy M, Joseph J, Kalyanaraman B (2013) Hydropropidine: a novel, cell-impermeant fluorogenic probe for detecting extracellular superoxide. Free Radic Biol Med 54:135–147

    Article  CAS  Google Scholar 

  21. Zielonka J, Sikora A, Joseph J, Kalyanaraman B (2010) Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe. J Biol Chem 285:14210–14216

    Article  CAS  Google Scholar 

  22. Kalyanaraman B, Hardy M, Zielonka J (2016) A critical review of methodologies to detect reactive oxygen and nitrogen species stimulated by NADPH oxidase enzymes: implications in pesticide toxicity. Curr Pharmacol Rep 2:193–201

    Article  CAS  Google Scholar 

  23. Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48:983–1001

    Article  CAS  Google Scholar 

  24. Zielonka J, Sikora A, Hardy M, Joseph J, Dranka BP, Kalyanaraman B (2012) Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides. Chem Res Toxicol 25:1793–1799

    Article  CAS  Google Scholar 

  25. Zielonka J et al (2012) Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J Biol Chem 287:2984–2995

    Article  CAS  Google Scholar 

  26. Michalski R, Michalowski B, Sikora A, Zielonka J, Kalyanaraman B (2014) On the use of fluorescence lifetime imaging and dihydroethidium to detect superoxide in intact animals and ex vivo tissues: a reassessment. Free Radic Biol Med 67:278–284

    Article  CAS  Google Scholar 

  27. Debski D et al (2016) Mechanism of oxidative conversion of Amplex(R) Red to resorufin: pulse radiolysis and enzymatic studies. Free Radic Biol Med 95:323–332

    Article  CAS  Google Scholar 

  28. Martin SJ, Bradley JG, Cotter TG (1990) HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis. Clin Exp Immunol 79:448–453

    Article  CAS  Google Scholar 

  29. Dufer J, Biakou D, Joly P, Benoist H, Carpentier Y, Desplaces A (1989) Quantitative morphological aspects of granulocytic differentiation induced in HL-60 cells by dimethylsulfoxide and retinoic acid. Leuk Res 13:621–627

    Article  CAS  Google Scholar 

  30. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  Google Scholar 

  31. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513:481–483

    Article  CAS  Google Scholar 

  32. Pick E (2014) Cell-free NADPH oxidase activation assays: “in vitro veritas”. Methods Mol Biol 1124:339–403

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grants NCI U01 CA178960 and R01 AA022986 to B.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Zielonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zielonka, J., Zielonka, M., Cheng, G., Hardy, M., Kalyanaraman, B. (2019). High-Throughput Screening of NOX Inhibitors. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics