Skip to main content

Visualization of Intracellular Hydrogen Peroxide with the Genetically Encoded Fluorescent Probe HyPer in NIH-3T3 Cells

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Reactive oxygen species (ROS) are involved in regulating normal physiological cell functions as second messengers as well as nonspecific damage of biomolecules in a pathological process known as oxidative stress. The HyPer family of genetically encoded probes are a useful noninvasive tool for monitoring the real-time dynamics of ROS in individual cells or model organisms. HyPer, the first genetically encoded probe for detection of hydrogen peroxide (H2O2), is oxidized with high specificity and sensitivity by H2O2, leading to ratiometric changes in the fluorescence excitation spectrum of the probe. These changes can be detected with a wide range of commercial confocal and wide-field microscope systems. Here we describe a detailed protocol for ratiometric monitoring of H2O2 produced by D-amino acid oxidase (DAAO) or by NADPH oxidase (NOX) in NIH-3T3 cells using the HyPer probe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  2. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radical Bio Med 45(5):549–561. https://doi.org/10.1016/j.freeradbiomed.2008.05.004

    Article  CAS  Google Scholar 

  3. D'Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824. https://doi.org/10.1038/nrm2256

    Article  CAS  PubMed  Google Scholar 

  4. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  5. Folkes LK, Christlieb M, Madej E, Stratford MR, Wardman P (2007) Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals. Chem Res Toxicol 20(12):1885–1894. https://doi.org/10.1021/tx7002195

    Article  CAS  PubMed  Google Scholar 

  6. Serrander L, Jaquet V, Bedard K, Plastre O, Hartley O, Arnaudeau S, Demaurex N, Schlegel W, Krause KH (2007) NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89(9):1159–1167. https://doi.org/10.1016/j.biochi.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  7. Stocker S, Maurer M, Ruppert T, Dick TP (2018) A role for 2-Cys peroxiredoxins in facilitating cytosolic protein thiol oxidation. Nat Chem Biol 14(2):148–155. https://doi.org/10.1038/nchembio.2536

    Article  CAS  PubMed  Google Scholar 

  8. Mendez I, Vazquez-Martinez O, Hernandez-Munoz R, Valente-Godinez H, Diaz-Munoz M (2016) Redox regulation and pro-oxidant reactions in the physiology of circadian systems. Biochimie 124:178–186. https://doi.org/10.1016/j.biochi.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  9. Rhee SG, Kil IS (2017) Multiple functions and regulation of mammalian peroxiredoxins. Annu Rev Biochem 86:749–775. https://doi.org/10.1146/annurev-biochem-060815-014431

    Article  CAS  PubMed  Google Scholar 

  10. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183. https://doi.org/10.1016/j.redox.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu Y, Sun J, Wang L, Qi B (2015) Endogenic oxidative stress response contributes to glutathione over-accumulation in mutant Saccharomyces cerevisiae Y518. Appl Microbiol Biotechnol 99(17):7069–7078. https://doi.org/10.1007/s00253-015-6629-7

    Article  CAS  PubMed  Google Scholar 

  12. Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80. https://doi.org/10.1016/j.jbbm.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  13. Yang G, de Castro Reis F, Sundukova M, Pimpinella S, Asaro A, Castaldi L, Batti L, Bilbao D, Reymond L, Johnsson K, Heppenstall PA (2015) Genetic targeting of chemical indicators in vivo. Nat Methods 12(2):137–139. https://doi.org/10.1038/nmeth.3207

    Article  CAS  PubMed  Google Scholar 

  14. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286. https://doi.org/10.1038/nmeth866

    Article  CAS  PubMed  Google Scholar 

  15. Markvicheva KN, Bilan DS, Mishina NM, Gorokhovatsky AY, Vinokurov LM, Lukyanov S, Belousov VV (2011) A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg Med Chem 19(3):1079–1084. https://doi.org/10.1016/j.bmc.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  16. Bilan DS, Pase L, Joosen L, Gorokhovatsky AY, Ermakova YG, Gadella TW, Grabher C, Schultz C, Lukyanov S, Belousov VV (2013) HyPer-3: a genetically encoded H(2)O(2) probe with improved performance for ratiometric and fluorescence lifetime imaging. ACS Chem Biol 8(3):535–542. https://doi.org/10.1021/cb300625g

    Article  CAS  PubMed  Google Scholar 

  17. Ermakova YG, Bilan DS, Matlashov ME, Mishina NM, Markvicheva KN, Subach OM, Subach FV, Bogeski I, Hoth M, Enikolopov G, Belousov VV (2014) Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nat Comm 5:5222. https://doi.org/10.1038/ncomms6222

    Article  CAS  Google Scholar 

  18. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333(6051):1888–1891. https://doi.org/10.1126/science.1208592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279(13):13044–13053. https://doi.org/10.1074/jbc.M312846200

    Article  CAS  PubMed  Google Scholar 

  20. Berg J, Hung YP, Yellen G (2009) A genetically encoded fluorescent reporter of ATP: ADP ratio. Nat Methods 6(2):161–166. https://doi.org/10.1038/nmeth.1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poburko D, Santo-Domingo J, Demaurex N (2011) Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. J Biol Chem 286(13):11672–11684. https://doi.org/10.1074/jbc.M110.159962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Whitaker M (2010) Genetically encoded probes for measurement of intracellular calcium. Methods Cell Biol 99:153–182. https://doi.org/10.1016/B978-0-12-374841-6.00006-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boselli A, Piubelli L, Molla G, Pilone MS, Pollegioni L, Sacchi S (2007) Investigating the role of active site residues of Rhodotorula gracilis D-amino acid oxidase on its substrate specificity. Biochimie 89(3):360–368. https://doi.org/10.1016/j.biochi.2006.10.017

    Article  CAS  PubMed  Google Scholar 

  24. Pollegioni L, Diederichs K, Molla G, Umhau S, Welte W, Ghisla S, Pilone MS (2002) Yeast D-amino acid oxidase: structural basis of its catalytic properties. J Mol Biol 324(3):535–546

    Article  CAS  Google Scholar 

  25. Matlashov ME, Belousov VV, Enikolopov G (2014) How much H(2)O(2) is produced by recombinant D-amino acid oxidase in mammalian cells? Antioxid Redox Signal 20(7):1039–1044. https://doi.org/10.1089/ars.2013.5618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pollegioni L, Falbo A, Pilone MS (1992) Specificity and kinetics of Rhodotorula gracilis D-amino acid oxidase. Biochim Biophys Acta 1120(1):11–16

    Article  CAS  Google Scholar 

  27. Bogdanova YA, Schultz C, Belousov VV (2017) Local generation and imaging of hydrogen peroxide in living cells. Curr Protocols Chem Biol 9(2):117–127. https://doi.org/10.1002/cpch.20

    Article  CAS  Google Scholar 

  28. Chen KC, Zhou Y, Zhang W, Lou MF (2007) Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells. Mol Vis 13:374–387

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Matlashov ME, Bogdanova YA, Ermakova GV, Mishina NM, Ermakova YG, Nikitin ES, Balaban PM, Okabe S, Lukyanov S, Enikolopov G, Zaraisky AG, Belousov VV (2015) Fluorescent ratiometric pH indicator SypHer2: applications in neuroscience and regenerative biology. Biochim Biophys Acta 1850(11):2318–2328. https://doi.org/10.1016/j.bbagen.2015.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ermakova YG, Pak VV, Bogdanova YA, Kotlobay AA, Yampolsky IV, Shokhina AG, Panova AS, Marygin RA, Staroverov DB, Bilan DS, Sies H, Belousov VV (2018) SypHer3s: a genetically encoded fluorescent ratiometric probe with enhanced brightness and an improved dynamic range. Chem Commun (Camb) 54(23):2898–2901. https://doi.org/10.1039/c7cc08740c

    Article  CAS  Google Scholar 

  31. Mishina NM, Markvicheva KN, Fradkov AF, Zagaynova EV, Schultz C, Lukyanov S, Belousov VV (2013) Imaging H2O2 microdomains in receptor tyrosine kinases signaling. Methods Enzymol 526:175–187. https://doi.org/10.1016/B978-0-12-405883-5.00011-9

    Article  CAS  PubMed  Google Scholar 

  32. Stein F, Kress M, Reither S, Piljic A, Schultz C (2013) FluoQ: a tool for rapid analysis of multiparameter fluorescence imaging data applied to oscillatory events. ACS Chem Biol 8(9):1862–1868. https://doi.org/10.1021/cb4003442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Russian Science Foundation grant 17-14-01086 (experiments with D-amino acid oxidase), Russian Foundation for Basic Research grant 18-54-74003 (image processing and PDGF experiments), and DFG IRTG 1816. YGE received Sergey Shpiz fellowship. Experiments were partially carried out using the equipment provided by the IBCH сore facility (CKP IBCH, supported by the Russian Ministry of Education and Science, grant RFMEFI62117X0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod V. Belousov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ermakova, Y.G., Mishina, N.M., Schultz, C., Belousov, V.V. (2019). Visualization of Intracellular Hydrogen Peroxide with the Genetically Encoded Fluorescent Probe HyPer in NIH-3T3 Cells. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics