Skip to main content

Setup and Use of HepaRG Cells in Cholestasis Research

  • Protocol
  • First Online:
Experimental Cholestasis Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1981))

Abstract

Since HepaRG cells can differentiate into well-polarized mature hepatocyte-like cells that synthesize, conjugate, and secrete bile acids, they represent an appropriate surrogate to primary human hepatocytes for investigations on drug-induced cholestasis mechanisms. In this chapter, culture conditions for obtaining HepaRG hepatocytes and the main methods used to detect cholestatic potential of drugs are described. Assays for evaluation of bile canaliculi dynamics and morphology are mainly based on time-lapse and phase-contrast microscopy analysis. Bile acid uptake, trafficking, and efflux are investigated using fluorescent probes. Individual bile acids are quantified in both culture media and cell layers by high-pressure liquid chromatography/tandem mass spectrometry. Preferential cellular accumulation of toxic hydrophobic bile acids is easily evidenced when exogenous primary and secondary bile acids are added to the culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roma MG, Crocenzi FA, Sánchez-Pozzi EA (2008) Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci 114:567–588

    Article  CAS  Google Scholar 

  2. Padda MS, Sanchez M, Akhtar AJ et al (2011) Drug-induced cholestasis. Hepatology 53:1377–1387

    Article  CAS  Google Scholar 

  3. Fattinger K, Funk C, Pantze M et al (2001) The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 69:223–231

    Article  CAS  Google Scholar 

  4. Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966

    Article  CAS  Google Scholar 

  5. Guguen-Guillouzo C, Guillouzo A (2010) General review on in vitro hepatocyte models and their applications. Methods Mol Biol 640:1–40

    Article  CAS  Google Scholar 

  6. Cerec V, Glaise D, Garnier D et al (2007) Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 45:957–967

    Article  CAS  Google Scholar 

  7. Dianat N, Dubois-Pot-Schneider H, Steichen C et al (2014) Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60:700–714

    Article  CAS  Google Scholar 

  8. Gumucio JJ, Arias IM (1993) Is the multidrug resistance an ATP channel? Hepatology 18:216–217

    Article  Google Scholar 

  9. Stieger B (2010) Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev 42:437–445

    Article  CAS  Google Scholar 

  10. Chan R, Benet LZ (2018) Measures of BSEP inhibition in vitro are not useful predictors of DILI. Toxicol Sci 162:499–508

    Article  CAS  Google Scholar 

  11. Gripon P, Rumin S, Urban S et al (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci 99:15655–15660

    Article  CAS  Google Scholar 

  12. Decaens C, Durand M, Grosse B et al (2012) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100:387–398

    Article  Google Scholar 

  13. Ihrke G, Neufeld EB, Meads T et al (1993) WIF-B cells: an in vitro model for studies of hepatocyte polarity. J Cell Biol 123:1761–1775

    Article  CAS  Google Scholar 

  14. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 1773:642–652

    Article  CAS  Google Scholar 

  15. Mesnil M, Fraslin JM, Piccoli C et al (1987) Cell contact but not junctional communication (dye coupling) with biliary epithelial cells is required for hepatocytes to maintain differentiated functions. Exp Cell Res 173:524–533

    Article  CAS  Google Scholar 

  16. Le Vee M, Jigorel E, Glaise D et al (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur J Pharm Sci 28:109–117

    Article  Google Scholar 

  17. Miyairi M, Oshio C, Watanabe S et al (1984) Taurocholate accelerates bile canalicular contractions in isolated rat hepatocytes. Gastroenterology 87:788–792

    Article  CAS  Google Scholar 

  18. Rodrigues AD, Lai Y, Cvijic ME et al (2014) Drug-induced perturbations of the bile acid pool, cholestasis, and hepatotoxicity: mechanistic considerations beyond the direct inhibition of the bile salt export pump. Drug Metab Dispos 42:566–574

    Article  Google Scholar 

  19. Sharanek A, Burban A, Burbank M et al (2016) Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs. Sci Rep 6:24709

    Article  CAS  Google Scholar 

  20. Bachour-El Azzi P, Sharanek A, Burban A et al (2015) Comparative localization and functional activity of the main hepatobiliary transporters in HepaRG cells and primary human hepatocytes. Toxicol Sci 145:157–168

    Article  CAS  Google Scholar 

  21. Tascher G, Burban A, Camus S et al (2019) In-depth proteome analysis highlights HepaRG cells as a versatile cell system surrogate to primary human hepatocytes. Cells 8, 192

    Google Scholar 

  22. Barber JA, Stahl SH, Summers C et al (2015) Quantification of drug-induced inhibition of canalicular cholyl-l-lysyl-fluorescein excretion from hepatocytes by high content cell imaging. Toxicol Sci 148:48–59

    Google Scholar 

  23. Chandra P, Brouwer KL (2004) The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res 21:719–735

    Article  CAS  Google Scholar 

  24. Javitt NB (2014) History of hepatic bile formation: old problems, new approaches. Adv Physiol Educ 38:279–285

    Article  Google Scholar 

  25. Boyer JL (2013) Bile formation and secretion. Compr Physiol 3:1035–1078

    Google Scholar 

  26. Yang B, Hill CE (2001) Nifedipine modulation of biliary GSH and GSSG/conjugate efflux in normal and regenerating rat liver. Am J Physiol Gastrointest Liver Physiol 281:85–94

    Article  Google Scholar 

  27. Deharde D, Schneider C, Hiller T et al (2016) Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition. Arch Toxicol 90:2497–2511

    Article  CAS  Google Scholar 

  28. Huebert RC, Splinter PL, Garcia F et al (2002) Expression and localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion. J Biol Chem 277:22710–22717

    Article  CAS  Google Scholar 

  29. Burban A, Sharanek A, Hüe R et al (2017) Penicillinase-resistant antibiotics induce non-immune-mediated cholestasis through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways. Sci Rep 7:1815

    Article  Google Scholar 

  30. Burban A, Sharanek A, Humbert L et al (2019) A predictive value of cellular accumulation of hydrophobic bile acids as a marker of cholestatic drug potential. Toxicol Sci (in press)

    Google Scholar 

  31. Humbert L, Maubert MA, Wolf C et al (2012) Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients. J Chromatogr 899:135–145

    CAS  Google Scholar 

  32. Sharanek A, Burban A, Humbert L et al (2015) Cellular accumulation and toxic effects of bile acids in cyclosporine A-treated HepaRG hepatocytes. Toxicol Sci 147:573–587

    Article  CAS  Google Scholar 

  33. Everson GT, Polokoff MA (1986) HepG2. A human hepatoblastoma cell line exhibiting defects in bile acid synthesis and conjugation. J Biol Chem 261:2197–2201

    CAS  Google Scholar 

  34. Monte MJ, Badia MD, Serrano MA et al (2001) Predominance of human versus rat phenotype in the metabolic pathways for bile acid synthesis by hybrid WIF-B9 cells. Biochim Biophys Acta 1534:45–55

    Article  CAS  Google Scholar 

  35. Aninat C, Piton A, Glaise D et al (2006) Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos 34:75–83

    Article  CAS  Google Scholar 

  36. Sharanek A, Bachour El-Azzi P, Al-Attrache H et al (2014) Different dose-dependent mechanisms are involved in early cyclosporine a-induced cholestatic effects in hepaRG cells. Toxicol Sci 141:244–253

    Google Scholar 

  37. Herrema H, Czajkowska D, Théard D et al (2006) Rho kinase, myosin-II, and p42/44 MAPK control extracellular matrix-mediated apical bile canalicular lumen morphogenesis in HepG2 cells. Mol Biol Cell 17:3291–3303

    Article  CAS  Google Scholar 

  38. Brouwer KLR, Keppler D, Hoffmaster KA et al (2013) In vitro methods to support transporter evaluation in drug discovery and development. Clin Pharmacol Ther 94:95–112

    Article  CAS  Google Scholar 

  39. Pernelle K, Le Guevel R, Glaise D et al (2011) Automated detection of hepatotoxic compounds in human hepatocytes using HepaRG cells and image-based analysis of mitochondrial dysfunction with JC-1 dye. Toxicol Appl Pharmacol 254:256–266

    Article  CAS  Google Scholar 

  40. Beriault DR, Werstuck GH (2013) Detection and quantification of endoplasmic reticulum stress in living cells using the fluorescent compound, Thioflavin T. Biochim Biophys Acta 1833:2293–2301

    Article  CAS  Google Scholar 

  41. Burban A, Sharanek A, Guguen-Guillouzo C et al (2018) Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic Biol Med 115:166–178

    Article  CAS  Google Scholar 

  42. Scherer M, Gnewuch C, Schmitz G et al (2009) Rapid quantification of bile acids and their conjugates in serum by liquid chromatography–tandem mass spectrometry. J Chromatogr B 877:3920–3925

    Article  CAS  Google Scholar 

  43. Reshetnyak VI (2013) Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol 19:7341–7360

    Article  Google Scholar 

  44. Sharanek A, Burban A, Humbert L et al (2017) Progressive and preferential cellular accumulation of hydrophobic bile acids induced by cholestatic drugs is associated with inhibition of their amidation and sulfation. Drug Metab Dispos 45:1292–1303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to all the postdoctoral fellows and PhD students, in particular Dr. Ahmad Sharanek and Dr. Audrey Burban, who have contributed to our cholestasis project. We would also like to thank Dr. Remy Le Guevel from the ImPACell platform (Biosit, University of Rennes 1) for his help with imaging analyses. This work was mostly supported by the European Community through the Innovative Medicines Initiative Joint Undertaking MIP-DILI project (grant agreement number 115336), resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/20072013) and EFPIA companies in kind contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Guillouzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guguen-Guillouzo, C., Guillouzo, A. (2019). Setup and Use of HepaRG Cells in Cholestasis Research. In: Vinken, M. (eds) Experimental Cholestasis Research. Methods in Molecular Biology, vol 1981. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9420-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9420-5_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9419-9

  • Online ISBN: 978-1-4939-9420-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics